NAME

Quiz 9. A reducing elbow shown in Figure is used to deflect water ($\rho=998 \mathrm{~kg} / \mathrm{m}^{3}$) flow at a rate of 0.03 $\mathrm{m}^{3} / \mathrm{s}$ in a horizontal pipe upward by an angle $\theta=45^{\circ}$ from the flow direction while accelerating it. The elbow discharges water into the atmosphere $\left(p_{2}=0\right)$. The cross-sectional area of the elbow is $150 \mathrm{~cm}^{2}$ at the inlet and $25 \mathrm{~cm}^{2}$ at the exit. The elevation difference between the centers of the exit and the inlet is 40 cm . Determine (a) the mass flow rate \dot{m} and water velocity at sections 1 and 2 , (b) the pressure at section 1 , and (c) the horizontal component of the anchoring force, $F_{A x}$, needed to hold the elbow in place. Assume frictionless, incompressible and steady flow.

Momentum equation:

$$
\sum \underline{\boldsymbol{F}}=\frac{\partial}{\partial t} \int_{C V} \underline{\boldsymbol{V}} \rho d V+\int_{C S} \underline{\boldsymbol{V}} \rho \underline{\boldsymbol{V}} \cdot d \underline{\boldsymbol{A}}
$$

Bernoulli's equation:

$$
p_{1}+\frac{1}{2} \rho V_{1}^{2}+\gamma z_{1}=p_{2}+\frac{1}{2} \rho V_{2}^{2}+\gamma z_{2}
$$

Note: Attendance (+2 points), format (+1 point)

Solution:

a) Continuity:

$$
\begin{gathered}
\dot{m}=\rho Q=\left(998 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\right)\left(0.03 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}\right)=30 \mathrm{~kg} / \mathrm{s} \\
V_{1}=\frac{Q}{A_{1}}=\frac{0.03 \mathrm{~m}^{3} / \mathrm{s}}{0.015 \mathrm{~m}^{2}}=2 \mathrm{~m} / \mathrm{s} ; \quad V_{2}=\frac{Q}{A_{2}}=\frac{0.03 \mathrm{~m}^{3} / \mathrm{s}}{0.0025 \mathrm{~m}^{2}}=12 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

(+0.5 point)
(+0.5 point)
b) Bernoulli equation:

$$
\begin{gathered}
p_{1}=p_{2}+\frac{1}{2} \rho\left(V_{2}^{2}-V_{1}^{2}\right)+\gamma\left(z_{2}-z_{1}\right) \\
p_{1}=(0)+\frac{1}{2}\left(998 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\right)\left(\left(12 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}-\left(2 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}\right)+\left(9790 \frac{\mathrm{~N}}{\mathrm{~m}^{3}}\right)(0.4 \mathrm{~m})=74 \boldsymbol{k P a}
\end{gathered}
$$

(+2 point)
(+0.5 point)
c) x-momentum:

$$
\begin{gathered}
F_{A x}+p_{1} A_{1}-p_{2} A_{2}=(-\underbrace{\rho V_{1} A_{1}}_{\dot{m}})\left(V_{1}\right)+(\underbrace{\rho V_{2} A_{2}}_{\dot{m}})\left(V_{2} \cos 45^{\circ}\right) \\
F_{A x}=\dot{m}\left(V_{2} \cos 45^{\circ}-V_{1}\right)-p_{1} A_{1} \\
F_{A x}=\left(30 \frac{\mathrm{~kg}}{\mathrm{~s}}\right)\left(\left(12 \frac{\mathrm{~m}}{\mathrm{~s}}\right) \cos 45^{\circ}-\left(2 \frac{\mathrm{~m}}{\mathrm{~s}}\right)\right)-\left(74,000 \frac{\mathrm{~N}}{\mathrm{~m}^{2}}\right)\left(0.015 \mathrm{~m}^{2}\right)=\mathbf{9 1 5} \mathrm{N}
\end{gathered}
$$

(+3 points)

