
October 24, 2016

NAME

Quiz 8. Water is to be moved from one large reservoir to another at a higher elevation as indicated in the Figure. The loss of available energy associated with 2.5 ft³/s being pumped from sections (1) to (2) is $h_L = 61 \frac{\bar{V}^2}{2g}$ where \bar{V} is the average velocity of water in 8-in inside-diameter piping involved, Determine the amount of shaft power required.

Solution

$$h_L = 61 \frac{\overline{V}^2}{2g}, \ p_1 = p_1, V_1 = V_2 = 0, \ h_t = 0$$

Therefore

$$h_p = (z_2 - z_1) + 61\frac{\bar{V}^2}{2q}$$

(+4 points)

$$\bar{V} = \frac{Q}{A} = \frac{2.5}{\frac{\pi}{4} \left(\frac{8}{12}\right)^2} = 7.162 \, ft/s$$

(+2 points)

Power

$$\dot{W_p} = \rho Q \left(g(z_2 - z_1) + 61 \frac{\overline{V}^2}{2} \right) = 1.94 \times 2.5[32.2(50) + 30.5 \times 7.162] \left(\frac{1}{550} \right) = 28 \ hp$$
(+1points)