NAME

Quiz 7. A $6-\mathrm{cm}$-diameter $20^{\circ} \mathrm{C}$ water jet strikes a plate containing a hole of $4-\mathrm{cm}$ diameter. Part of the jet passes through the hole, and part is deflected. Determine the horizontal force F required to hold the plate. $\left(\rho=998 \mathrm{~kg} / \mathrm{m}^{3}\right)$

$$
\sum \underline{F}=\sum_{C S} \underline{V}(\rho \underline{V} \cdot \underline{A})
$$

Note: Attendance (+2 points), format (+1 point)

Solution:

Horizontal component of the momentum equation,

$$
\sum F_{x}=\sum_{C S} u(\rho u \cdot A)
$$

For a CV enclosing the plate and the two jets,

$$
-F=u_{\text {hole }}\left(\rho u_{\text {hole }} A_{\text {hole }}\right)-u_{i n}\left(\rho u_{i n} A_{\text {in }}\right)
$$

With $u_{\text {hole }}=u_{\text {in }}=25 \frac{\mathrm{~m}}{\mathrm{~s}}, A_{\text {in }}=\frac{\pi}{4} D_{\text {in }}^{2}$, and $A_{\text {hole }}=\frac{\pi}{4} D_{\text {hole }}^{2}$,

$$
F=u^{2} \rho\left(A_{\text {in }}-A_{\text {hole }}\right)=\frac{u^{2} \rho \pi}{4}\left(D_{\text {in }}^{2}-D_{\text {hole }}^{2}\right)
$$

(+2 points)

$$
\begin{gathered}
F=25^{2} \times 998 \times \frac{\pi}{4}\left(0.06^{2}-0.04^{2}\right) \\
\therefore F=980 N(\text { to left })
\end{gathered}
$$

