NAME

Quiz 6. The wind blows through a $7 \mathrm{ft} \times 10 \mathrm{ft}$ garage door opening with a speed of $5 \mathrm{ft} / \mathrm{s}$ as shown in the figure. Determine the average speed, V , of the air through the two $3 \mathrm{ft} \times 4 \mathrm{ft}$ openings in the windows.

Attendance (+2 points), format (+1 point)

Solution:

From the conservation of mass law for steady flow,

$$
\begin{gathered}
\sum \dot{m}_{o u t}-\sum \dot{m}_{i n}=0 \\
\dot{m} \underset{\substack{\text { darage } \\
\text { door }}}{ }=\dot{m}_{\text {window }}+\dot{m}_{\text {window }}
\end{gathered}
$$

(+3 points)

By noting that $\dot{m}=\rho A V$,

$$
\begin{gathered}
\rho A_{\text {door }}^{\text {darageV }} V \underset{\text { garage door }}{\text { normal to }}
\end{gathered}=\rho A_{\text {window }} V+\rho A_{\text {window }} V
$$

or,

$$
V=\frac{\begin{array}{c}
\text { Agarage } \\
\text { door }
\end{array} \cdot\left(V_{\text {wind }} \cdot \sin 20^{\circ}\right)}{2 \cdot A_{\text {window }}}
$$

(+3 points)

Thus,

$$
V=\frac{(7 \mathrm{ft})(10 \mathrm{ft})\left(5 \frac{\mathrm{ft}}{\mathrm{~s}}\right)\left(\sin 20^{\circ}\right)}{(2)(3 \mathrm{ft})(4 \mathrm{ft})}=4.99 \mathrm{ft} / \mathrm{s}
$$

