NAME
Quiz 16. A sphere weights 250 g and is 7.35 cm in diameter. It is dropped from rest from the surface of a 100-m-depth lake. Assuming a laminar-flow drag coefficient $C_{D}=0.5$, estimate (a) its falling velocity and (b) the time to reach to the lake bottom. Neglect the initial transient state and assume that the sphere falls at constant velocity, known as the 'terminal velocity', from the beginning. ( $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}, v=1.12$ $\times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$ )


For a sphere,
Buoyancy $=\left(\frac{4}{3} \pi R^{3}\right) \rho g$
Drag $=\frac{1}{2} \rho C_{D} V^{2}\left(\pi R^{2}\right)$
where $R$ is the radius.

Note: Attendance (+2 points), format (+1 point)

## Solution:

(a) Terminal velocity
Weight = Buoyancy + Drag
or

$$
m g=\left(\frac{4}{3} \pi R^{3}\right) \rho g+\frac{1}{2} \rho C_{D} V^{2}\left(\pi R^{2}\right)(+3)
$$

Thus,

$$
\begin{gathered}
V=\sqrt{\frac{8 g}{\pi \rho C_{D} D^{2}}\left(m-\frac{\pi \rho D^{3}}{6}\right)} \\
=\sqrt{\frac{(8)(9.81)}{\pi(1000)(0.5)(0.0735)^{2}}\left(0.25-\frac{\pi(1000)(0.0735)^{3}}{6}\right)}=0.624 \mathrm{~m} / \mathrm{s} \quad(+2)
\end{gathered}
$$

Re check:

$$
R e=\frac{V D}{v}=\frac{(0.624)(0.0735)}{1.21 \times 10^{-5}}=4.1 \times 10^{4} \quad\left(C_{D} \approx 0.5 \text { from Fig. } 9.21\right. \text { in pp. 526) }
$$

(b) Falling time

$$
t=\frac{h}{V}=\frac{100}{0.624}=160 \mathrm{~s}=2 \mathrm{~m} 40 \mathrm{~s}(+2)
$$

