NAME
Quiz 12. The pump moves $120 \mathrm{gal} / \mathrm{min}\left(1 \mathrm{gal}=0.133681 \mathrm{ft}^{3}\right)$ of water from tank A to tank B as shown in the figure. The pipes are steel ($\varepsilon=0.00015 \mathrm{ft}$). Water is at $60^{\circ} \mathrm{F}\left(\rho=1.938\right.$ slugs $/ \mathrm{ft}^{3}$ and $\left.\mu=2.344 \times 10^{-5} \mathrm{lb} \cdot \mathrm{s} / \mathrm{ft}^{2}\right)$. Neglecting the minor losses, find the (a) the average water velocity V, (b) Reynolds number $\operatorname{Re}=\rho V D / \mu$, and (c) friction factor f through the 2 -in pipe and (d) the required pump power $\dot{W}_{p}=\rho \mathrm{g} Q h_{\mathrm{p}}\left(1 \mathrm{hp}=550 \mathrm{ft}-\mathrm{lb} / \mathrm{s}\right.$ and $\left.\mathrm{g}=32.2 \mathrm{ft}^{2} / \mathrm{s}\right)$. Assume the flow is turbulent and use the following energy and friction factor equations,

$$
\begin{gathered}
\frac{p_{1}}{\gamma}+\frac{V_{1}}{2 \mathrm{~g}}+z_{1}+h_{p}=\frac{p_{2}}{\gamma}+\frac{V_{2}}{2 \mathrm{~g}}+z_{2}+f \frac{L}{D} \frac{V^{2}}{2 \mathrm{~g}} \\
\frac{1}{\sqrt{f}}=-1.8 \log \left[\left(\frac{\varepsilon / D}{3.7}\right)^{1.1}+\frac{6.9}{R e}\right]
\end{gathered}
$$

Note: Attendance (+2 points), format (+1 point)

Solution

(a) $V=\frac{Q}{A}=\frac{(120)(0.133681) /(60)}{(\pi)(2 / 12)^{2} /(4)}=\mathbf{1 2 . 2 5} \mathbf{f t} / \mathbf{s} \mathbf{(+ 1)}$
(b) $\operatorname{Re}=(1.938)(12.25)\left(\frac{2}{12}\right) /\left(2.344 \times 10^{-5}\right)=\mathbf{1 . 6 8 8} \times \mathbf{1 0}^{\mathbf{5}}(+1)$
(c) $\frac{1}{\sqrt{f}}=-1.8 \log \left[\left(\frac{0.00015 /(2 / 12)}{3.7}\right)^{1.1}+\frac{6.9}{1.688 \times 10^{5}}\right] \Rightarrow f=\mathbf{0 . 0 2 1}(+\mathbf{1})$
(d) Energy equation:

Since $p_{1}=p_{2}=0, V_{1}=V_{2}=0, z_{1}=1 \mathrm{ft}$, and $z_{2}=390 \mathrm{ft}+20 \mathrm{ft}$,

$$
\begin{gathered}
h_{p}=\left(z_{2}-z_{1}\right)+f \frac{L}{D} \frac{V^{2}}{2 \mathrm{~g}} \mathbf{(+ 2)} \\
h_{p}=(390+20-1)+(0.021) \frac{(390)}{(2 / 12)} \frac{(12.25)^{2}}{(2)(32.2)} \\
h_{p}=\mathbf{5 2 3 . 5} \mathbf{f t}(+\mathbf{1}) \\
\therefore W_{p}=\rho \mathrm{g} Q h_{p}=\frac{(1.938)(32.2)\left[\frac{(120)(0.133681)}{60}\right](523.5)}{550}=\mathbf{1 6} \mathbf{~ h p ~ (+ 1)}
\end{gathered}
$$

