NAME
Fluids-ID

Quiz 15. SAE 30 oil at $20^{\circ} \mathrm{C}$ flows at $U=10 \mathrm{ft} / \mathrm{s}$ over the upper side of a flat plate of which width $b=2 \mathrm{ft}$ and length $L=5 \mathrm{ft}$ and area $A=b L=10 \mathrm{ft}^{2}$. (a) What is the boundary layer thickness at the middle of the plate and (b) what is the friction drag D_{f} acting on the plate? Transition to turbulent flow may occur at $\operatorname{Re}=5 \times 10^{5}$. ($\rho=1.73$ slug $/ \mathrm{ft}^{3} ; \mu=0.00607$ slug $/ \mathrm{ft} \cdot \mathrm{s}$)

Note: Attendance (+2 points), format (+1 point)

Reynolds number:

$$
R e_{L}=\frac{U L}{v}, \quad R e_{x}=\frac{U x}{v}
$$

Boundary layer thickness:

$$
\frac{\delta}{x}=\left\{\begin{array}{l}
\frac{5}{\sqrt{R e_{x}}} \text { (laminar) } \\
\frac{0.16}{R e_{x}^{\frac{1}{7}}}(\text { turbulent })
\end{array}\right.
$$

Friction drag coefficient:

$$
C_{f}=\frac{D_{f}}{\frac{1}{2} \rho U^{2} A}=\left\{\begin{array}{l}
\frac{1.328}{\sqrt{R e_{L}}} \text { (laminar) } \\
\frac{0.031}{R e_{L}^{\frac{1}{7}}} \text { (turbulent) }
\end{array}\right.
$$

