NAME
Fluids-ID

Quiz 13. The pump moves $120 \mathrm{gal} / \mathrm{min}\left(1 \mathrm{gal}=0.133681 \mathrm{ft}^{3}\right)$ of water from tank A to tank B with 390 ft long pipe system as shown in the figure. The pipes are steel $(\varepsilon=0.00015 \mathrm{ft})$. Water is at $60^{\circ} \mathrm{F}\left(\rho=1.938\right.$ slugs $/ \mathrm{ft}^{3}$ and $\mu=$ $\left.2.344 \times 10^{-5} \mathrm{lb} \cdot \mathrm{s} / \mathrm{ft}^{2}\right)$. Neglecting the loss for the short inlet piping and the minor losses, find the (a) the average water velocity V through the pipe, (b) Reynolds number $\operatorname{Re}=\rho V D / \mu$, and (c) friction factor f through the 2-in (12in $=1 \mathrm{ft})$ pipe and (d) determine the required pump power $\dot{W}_{p}=\rho \mathrm{g} Q h_{\mathrm{p}}(1 \mathrm{hp}=$ $550 \mathrm{ft}-\mathrm{lb} / \mathrm{s}$ and $\mathrm{g}=32.2 \mathrm{ft}^{2} / \mathrm{s}$). Assume the flow is turbulent and use the following energy equation and friction factor formula,

$$
\begin{gathered}
\frac{p_{1}}{\gamma}+\alpha_{1} \frac{V_{1}}{2 \mathrm{~g}}+z_{1}+h_{p}=\frac{p_{2}}{\gamma}+\alpha_{2} \frac{V_{2}}{2 \mathrm{~g}}+z_{2}+f \frac{L}{D} \frac{V^{2}}{2 \mathrm{~g}} \\
\frac{1}{\sqrt{f}}=-1.8 \log \left[\left(\frac{\varepsilon / D}{3.7}\right)^{1.1}+\frac{6.9}{R e}\right]
\end{gathered}
$$

Note: Attendance (+2 points), format (+1 point)

