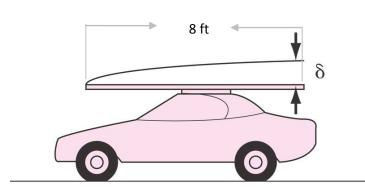
December 8, 2014

NAME

Fluids-ID

Quiz 13. Suppose you buy a 4- by 8-ft sheet of plywood and put it on your roof rack. You drive the car at 35 mi/h. The flow is turbulent from the leading edge of the board and the board is perfectly aligned with the airflow. Find (a) the boundary layer thickness δ , (b) the local friction coefficient c_f , and (c) the wall shear stress au_w at the end of the board and (d) the friction drag coefficient C_f and (e) the friction drag D_f on the upper side of the plywood. (Note: 1 mi/h = 1.4667 ft/s, 1 lb = 1 slug·ft/s², ν = 1.57 × 10⁻⁴ ft^2/s and $\rho = 2.38 \times 10^{-3} \text{ slugs/ft}^3$)

Boundary layer thickness:


$$\delta(x) = \frac{0.16x}{Re_x^{1/7}}$$

Local friction coefficient:

$$c_f(x) = \frac{\tau_w}{\frac{1}{2}\rho U_\infty^2} = \frac{0.027}{Re_x^{1/7}}$$

Friction drag coefficient:
$$C_f = \frac{D_f}{\frac{1}{2}\rho U_{\infty}^2 A} = \frac{0.031}{Re_L^{1/7}}$$

where,
$$Re_x = {^U_\infty}^x/_{\mathcal{V}}$$
 and $Re_L = {^U_\infty}^L/_{\mathcal{V}}$

Note: Attendance (+2 points), format (+1 point)

Solution: