NAME
Fluids-ID
Quiz 12. The pump shown in Figure delivers a head of 250 ft to the water. The differene in elevation of the two ponds is 200 ft . $\left(P=\rho \mathrm{gQh} ; \rho=1.94 \mathrm{slugs} / \mathrm{ft}^{3} ; \mu=2.34 \times 10^{-5} \mathrm{lb} \cdot \mathrm{s} / \mathrm{ft}^{2} ; \mathrm{g}=32.2 \mathrm{ft} / \mathrm{s}^{2} ; 1 \mathrm{hp}=550\right.$ $\mathrm{ft} \cdot \mathrm{lbf} / \mathrm{s}$; Reynolds number, $\mathrm{Re}=\rho V \mathrm{D} / \mu$)

Energy Equation

$\frac{p_{1}}{\rho g}+\frac{V_{1}^{2}}{2 g}+z_{1}+h_{p}=\frac{p_{2}}{\rho g}+\frac{V_{2}^{2}}{2 g}+z_{2}+\frac{V^{2}}{2 g}\left(\frac{f \ell}{d}+\sum K_{L}\right)$

$\frac{1}{\sqrt{f}}=-1.8 \log \left[\left(\frac{\varepsilon / d}{3.7}\right)^{1.11}+\frac{6.9}{R e}\right]$
Note: Attendance (+2 points), format (+1 point)
a) Simplify energy equation using the given conditions and determine velocity, V, as a function of friction factor, f.
b) Use the given conditions and determine Reynolds number, $R e$, as a function of velocity, V.
c) Determine velocity V by following the steps listed below

1) Assume $f=0.02$ as your first guess and find V using the equation from (a)
2) Find $R e$ using the equation from (b) and the V from the previous step
3) Find a new f using the Haaland equation and Re from step 2)
4) Find a new V using the f from step 3) and the equation from (a)
5) Repeat the steps 2) through 4) until f is converged to the thousandth decimal point
d) Determine the power P that pump adds to the water.
