NAME
Fluids-ID

Quiz 8. A water jet ($\rho=1.94$ slug $/ \mathrm{ft}^{3}$) is deflected 60° by a stationary vane as shown in the figure. The incoming jet has a speed of $100 \mathrm{ft} / \mathrm{s}$ and a diameter of 1 in . Neglect the influence of gravity and assume steady and irrotational flow.

(1) Show that $v_{1}=v_{2}$ using the Bernoulli equation.
(2) Find the relationship between cross-sectional area at location $1\left(A_{1}\right)$ and $2\left(A_{2}\right)$ using the continuity equation.
(3) Find the horizontal F_{x} and vertical F_{y} components of the force exerted by the jet on the vane. Note: Attendance (+2 points), format (+1 point)

Solution:

Bernoulli equation: $\not p_{1}+\frac{1}{2} \rho v_{1}^{2}+\gamma \not \chi_{1}=p \neq \frac{1}{2} \rho v_{2}^{2}+\gamma \psi_{2}^{4} \quad \therefore v_{1}=v_{2}=v \quad$ (+2 points)
Continuity equation: $v_{1} A_{1}=v_{2} A_{2} \quad \therefore A_{1}=A_{2}=A$
(+1 point)
x-Momentum equation:

$$
\begin{align*}
F_{x} & =v_{1}\left(-\rho v_{1} A_{1}\right)+v_{2} \cos 60^{\circ}\left(\rho v_{2} A_{2}\right)=-\rho A v^{2}\left(1-\cos 60^{\circ}\right) \\
& =-\left(1.94 \frac{\text { slug }}{\mathrm{ft}^{3}}\right) \frac{\pi}{4}\left(\frac{1}{12} \mathrm{ft}\right)^{2}\left(100 \frac{\mathrm{ft}}{\mathrm{~s}}\right)^{2}\left(1-\cos 60^{\circ}\right)=-53.0 \mathrm{lbf} \tag{+2points}
\end{align*}
$$

y-Momentum equation:

$$
\begin{aligned}
F_{y} & =-v_{2} \sin 60^{\circ}\left(\rho v_{2} A_{2}\right)=-\rho A v^{2} \sin 60^{\circ} \\
& =-\left(1.94 \frac{\operatorname{slug}}{\mathrm{ft}^{3}}\right) \frac{\pi}{4}\left(\frac{1}{12} \mathrm{ft}\right)^{2}\left(100 \frac{\mathrm{ft}}{\mathrm{~s}}\right)^{2}\left(\sin 60^{\circ}\right)=-91.8 \mathrm{lbf}
\end{aligned}
$$

(+2 points)

The force of the jet on the vane is opposite in direction to the force required to hold the vane stationary.

