NAME
Fluids-ID

Quiz 13.

Water is pumped between two reservoirs at a flow rate $Q=0.2 \mathrm{ft}^{3} / \mathrm{s}$ through a pipe with a total length $\ell=400 \mathrm{ft}$ and a diameter $d=2 \mathrm{in}$. The roughness ratio is $\varepsilon / d=$ 0.001 . Compute the pump horsepower, P, required. Minor losses are not negligiable. ($P=\rho \mathrm{gQ} h_{p} ; \rho=1.94$ slugs $/ \mathrm{ft}^{3} ; v=0.000011$ $\left.\mathrm{ft}^{2} / \mathrm{s} ; \mathrm{g}=32.2 \mathrm{ft} / \mathrm{s}^{2} ; 1 \mathrm{hp}=550 \mathrm{ft} \cdot \mathrm{lbf} / \mathrm{s}\right)$

- Energy Eq.:

$$
\frac{p_{1}}{\rho g}+\frac{V_{1}^{2}}{2 g}+z_{1}+h_{p}=\frac{p_{2}}{\rho g}+\frac{V_{2}^{2}}{2 g}+z_{2}+\frac{V^{2}}{2 g}\left(\frac{f \ell}{d}+\sum K_{L}\right)
$$

- Friction factor, f :

$$
\frac{1}{\sqrt{f}}=-1.8 \log \left[\left(\frac{\varepsilon / d}{3.7}\right)^{1.11}+\frac{6.9}{R e}\right]
$$

Loss	K_{L}
Sharp entrance	0.5
Open globe valve	6.9
$12-$ in bend	0.25
Regular 90° elbow	0.95
Half-closed gate valve	2.7
Sharp exit	1.0

Note: Attendance (+2 points), format (+1 point)

