November 11, 2013

NAME
Fluids-ID

Quiz 11.
A. The drag D on a sphere moving in a fluid is known to be function of the sphere diameter d, the velocity V, and the fluid viscosity μ and density ρ. Using the pi theorem, find an appropriate dimensionless relationship.
B. Laboratory tests on a 4-in-diameter sphere model were performed in a water tunnel and some model data are plotted in the Figure. Estimate the prototype drag on a 8 -ft-diameter balloon moving in air at a velocity 3.28 ft / s. (Hint: You will need to set П parameters for the
 tests and the balloon equal to each other)

Notes:

- $D \doteq F ; d \doteq L ; V \doteq L T^{-1} ; \rho \doteq F L^{-4} T^{2} ; \mu \doteq F L^{-2} T$
- For water: $\mu_{m}=2.3 \times 10^{-5} \mathrm{lb} \cdot \mathrm{s} / \mathrm{ft}^{2}$ and $\rho_{m}=1.94 \mathrm{slug} / \mathrm{ft}^{3}$
- For air: $\mu=3.7 \times 10^{-7} \mathrm{lb} \cdot \mathrm{s} / \mathrm{ft}^{2}$ and $\rho=2.38 \times 10^{-3} \mathrm{slug} / \mathrm{ft}^{3}$

Attendance (+2 points), format (+1 point)

