
November 4, 2013

Fluids-ID

Quiz 10. An oil film drains steadily down the side of a vertical wall, as shown on the Figure. After an initial development at the top of the wall, the film becomes independent of z and of constant thickness (δ). Assume that w = w(x), pressure gradient is negligible, and shear stress (τ) at the free surface is zero.

- A. Solve Navier-Stokes for w(x).
- B. If the oil is SAE 30W ($\rho = 891 \text{ kg/m}^3$ and $\mu = 0.29 \text{ kg/m} \cdot \text{s}$), $\delta = 2 \text{ mm}$, and the plate width (into the paper) W=1 m and height H=2 m, find (a) the maximum velocity w_{max} , (b) flow rate Q, (c) average velocity \overline{w} , (d) shear stress on the wall τ_w , and (e) the friction drag force acting on the plate D.

Continuity:	$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$
Momentum:	$\rho\left(\frac{\partial w}{\partial t} + u\frac{\partial w}{\partial x} + v\frac{\partial w}{\partial y} + w\frac{\partial w}{\partial z}\right) = -\frac{dp}{dz} - \rho g + \mu\left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2}\right)$
Flow rate:	$Q = \int_{A} \underline{V} \cdot \underline{dA}$
Average velocity:	$\overline{w} = Q/A$
Shear stress:	$\tau = \mu \frac{dw}{dx}$
Friction drag:	$D = \tau_w \cdot S$, where S = wetted area

Note: Attendance (+2 points), format (+1 point)