Fluids in Rigid-Body Motion

$$
\text { 9. 14. } 2016
$$

Hyunse Yoon, Ph.D.

Associate Research Scientist
IIHR-Hydroscience \& Engineering

Newton's $2^{\text {nd }}$ Law of Motion

- In general, for a body of mass m,

$$
m \boldsymbol{a}=\sum \boldsymbol{F}
$$

where, \boldsymbol{a} is the acceleration of the body and $\sum \boldsymbol{F}$ is the vector sum of the external forces acting on the body.

- For a fluid element,

$$
\begin{equation*}
m \boldsymbol{a}=\boldsymbol{F}_{\mathrm{B}}+\boldsymbol{F}_{\mathrm{S}} \tag{1}
\end{equation*}
$$

where,
o $\boldsymbol{F}_{\mathrm{B}}$ is the body force due to the gravity, i.e., the weight of the fluid element
o $\boldsymbol{F}_{\mathrm{S}}$ is the surface force due to the pressure and viscous friction on the surface of the fluid element

- In fluids, often times the motion equation is written for a unit volume by using the relationship $m=\rho \bigvee$ and dividing Eq. (1) by the volume V,

$$
\rho \boldsymbol{a}=\boldsymbol{f}_{\mathrm{b}}+\boldsymbol{f}_{\mathrm{s}}
$$

where, $\boldsymbol{f}_{\mathrm{b}}$ and $\boldsymbol{f}_{\mathrm{s}}$ are the body and surface forces per unit volume.

Newton's $2^{\text {nd }}$ Law of Motion - Contd.

- Body force (Weight of the fluid)

$$
\begin{gathered}
\boldsymbol{F}_{B}=-W \widehat{\boldsymbol{k}}=-\rho \mathrm{g} \not \subset \widehat{\boldsymbol{k}} \\
\therefore \boldsymbol{f}_{b}=-\rho \mathrm{g} \widehat{\boldsymbol{k}}
\end{gathered}
$$

- Surface force

$$
\boldsymbol{f}_{s}=\boldsymbol{f}_{p}+\boldsymbol{f}_{v}
$$

where,
o $\boldsymbol{f}_{p}=-\nabla p$ due to the pressure
o $\boldsymbol{f}_{v}=\nabla \cdot \boldsymbol{\tau}$ due to the viscous shear stress

- General motion equation for fluids

$$
\begin{equation*}
\rho \boldsymbol{a}=-\rho \mathrm{g} \widehat{\boldsymbol{k}}-\nabla p+\nabla \cdot \boldsymbol{\tau} \tag{2}
\end{equation*}
$$

Note: For one dimensional flow of Newtonian fluids, $\tau=\mu \frac{d u}{d y}$. This implies that the viscous shear stress (or the shear force) is caused by the relative motion between fluid particles.

The body force and the surface pressure force acting on a differential fluid element in the vertical direction.

Shear stresses that may cause a net angular acceleration about axis O.

Special Case: Fluids at Rest

- For fluids at rest, i.e., with no motion, Eq. (2) can be simplified as

$$
\underbrace{\rho \boldsymbol{a}}_{=0}=-\rho \mathrm{g} \widehat{\boldsymbol{k}}-\nabla p+\underbrace{\nabla \cdot \boldsymbol{\tau}}_{=0}
$$

or,

$$
\begin{equation*}
\nabla p=\rho \mathbf{g} \tag{3}
\end{equation*}
$$

where, $\mathbf{g}=-\mathrm{g} \hat{\mathbf{k}}$.

- If rewrite Eq. (3) in components,

$$
\begin{equation*}
\frac{\partial p}{\partial x}=0, \quad \frac{\partial p}{\partial y}=0, \quad \frac{\partial p}{\partial z}=-\rho \mathrm{g} \tag{4}
\end{equation*}
$$

Thus, p is independent of x and y (i.e., the pressure remains constant in any horizontal direction) and varies only in the vertical direction z as a result of gravity.

- If ρ is constant, the solution of Eq. (4) becomes

$$
p=-\gamma z
$$

by taking $p=0$ at $z=0$. This is the hydrostatic pressure equation for incompressible fluids at rest.

Rigid Body Motion

- In rigid-body motion, all particles are in combined translation and rotation, and there is no relative motion between particles.
- With no relative motion, there are no strains or strain rates, so that the viscous term in Eq. (2) vanishes,

$$
\rho \boldsymbol{a}=-\rho \mathrm{g} \widehat{\boldsymbol{k}}-\nabla p+\underbrace{\nabla \cdot \boldsymbol{\tau}}_{=0}
$$

or,

$$
\begin{equation*}
\nabla p=\rho(\mathbf{g}-\boldsymbol{a}) \tag{5}
\end{equation*}
$$

where, $\mathbf{g}=-\mathrm{g} \widehat{\boldsymbol{k}}$.

- Two simple rigid-motion cases of interest are
a) Rigid body translation: Constant linear acceleration $\boldsymbol{a}=a_{x} \hat{\boldsymbol{\imath}}+a_{z} \widehat{\boldsymbol{k}}$
b) Rigid body rotation: Constant rotation $\boldsymbol{\Omega}=\Omega \widehat{\boldsymbol{k}}$

Rigid Body Translation

- In case of uniform rigid-body acceleration, Eq. (5) applies, \boldsymbol{a} having the same magnitude and direction for all particles.
- The vector sum of \mathbf{g} and - \boldsymbol{a} gives the direction of the pressure gradient or the greatest rate of increase of p.
- Then, the surfaces of constant pressure must be perpendicular to the direction of pressure gradient and are thus tilted at a downward angle θ.

Tilting of constant-pressure surfaces in a tank of liquid in rigid-body acceleration.

$$
\begin{equation*}
\nabla p=\rho(\mathbf{g}-\boldsymbol{a}) \tag{5}
\end{equation*}
$$

where,

$$
\begin{gathered}
\mathbf{g}=-\mathrm{g} \widehat{\boldsymbol{k}} \\
\boldsymbol{a}=a_{x} \hat{\boldsymbol{\imath}}+a_{z} \widehat{\boldsymbol{k}}
\end{gathered}
$$

Thus,

$$
\nabla p=\frac{\partial p}{\partial x} \hat{\boldsymbol{\imath}}+\frac{\partial p}{\partial z} \widehat{\boldsymbol{k}}=-\rho a_{x} \hat{\boldsymbol{\imath}}-\rho\left(\mathrm{g}+a_{z}\right) \widehat{\boldsymbol{k}}
$$

Equating like components,

$$
\frac{\partial p}{\partial x}=-\rho a_{x} \quad \frac{\partial p}{\partial z}=-\rho\left(\mathrm{g}+a_{z}\right)
$$

The angle of constant pressure lines,

$$
\theta=\tan ^{-1} \frac{a_{x}}{\mathrm{~g}+a_{z}}
$$

Rigid Body Translation - Contd.

- One of the tilted lines (the surfaces of constant pressure) is the free surface, which is found by the requirement that the fluid retain its volume unless it spills.
- The rate of increase of pressure in the direction $\mathbf{g}-\boldsymbol{a}$ is greater than in the ordinary hydrostatics and is given by

$$
\frac{d p}{d s}=\rho G \quad \text { where } G=\sqrt{a_{x}^{2}+\left(\mathrm{g}+a_{z}\right)^{2}}
$$

$$
\begin{equation*}
\nabla p=\rho(\mathbf{g}-\boldsymbol{a}) \tag{5}
\end{equation*}
$$

where,

$$
\begin{gathered}
\mathbf{g}=-\mathrm{g} \widehat{\boldsymbol{k}} \\
\boldsymbol{a}=a_{x} \hat{\boldsymbol{\imath}}+a_{z} \widehat{\boldsymbol{k}}
\end{gathered}
$$

Thus,

$$
\nabla p=\frac{\partial p}{\partial x} \hat{\boldsymbol{\imath}}+\frac{\partial p}{\partial z} \widehat{\boldsymbol{k}}=-\rho a_{x} \hat{\boldsymbol{\imath}}-\rho\left(\mathrm{g}+a_{z}\right) \widehat{\boldsymbol{k}}
$$

Equating like components,

$$
\frac{\partial p}{\partial x}=-\rho a_{x} \quad \frac{\partial p}{\partial z}=-\rho\left(\mathrm{g}+a_{z}\right)
$$

The angle of constant pressure lines,

$$
\theta=\tan ^{-1} \frac{a_{x}}{\mathrm{~g}+a_{z}}
$$

Rigid Body Translation - Example

EXAMPLE 2.13

A drag racer rests her coffee mug on a horizontal tray while she accelerates at $7 \mathrm{~m} / \mathrm{s}^{2}$. The mug is 10 cm deep and 6 cm in diameter and contains coffee 7 cm deep at rest. (a) Assuming rigid-body acceleration of the coffee, determine whether it will spill out of the mug. (b) Calculate the gage pressure in the corner at point A if the density of coffee is $1010 \mathrm{~kg} / \mathrm{m}^{3}$.

The coffee tilted during the acceleration.

Rigid Body Rotation

- For a fluid rotating about the z axis at a constant rate Ω without any translation, the fluid acceleration will be a centripetal term,

$$
\boldsymbol{a}=-r \Omega^{2} \hat{\boldsymbol{i}}_{\boldsymbol{r}}
$$

- From Equation (5) written in a cylindrical coordinate system,

$$
\nabla p=\frac{\partial p}{\partial r} \hat{\boldsymbol{\imath}}_{\boldsymbol{r}}+\frac{\partial p}{\partial z} \widehat{\boldsymbol{k}}=\rho(\mathbf{g}-\boldsymbol{a})=\rho\left(r \Omega^{2} \hat{\boldsymbol{\imath}}_{\boldsymbol{r}}-\mathrm{g} \widehat{\boldsymbol{k}}\right)
$$

- Equating like components,

$$
\begin{equation*}
\frac{\partial p}{\partial r}=\rho r \Omega^{2} \quad \frac{\partial p}{\partial z}=-\rho \mathrm{g} \tag{6}
\end{equation*}
$$

- By solving the two $1^{\text {st}}$-order PDE's in Eq. (6),

$$
\begin{equation*}
p=p_{0}-\rho \mathrm{g} z+\frac{1}{2} \rho r^{2} \Omega^{2} \tag{7}
\end{equation*}
$$

where, p_{0} is the pressure at $(r, z)=(0,0)$.

- The pressure is linear in z and quadratic (parabolic) in r.
Development of paraboloid constant-pressure surfaces in a fluid in rigid-body rotation. The dashed line along the direction of maximum pressure increase is an exponential curve.

Rigid Body Rotation - Contd.

- If we wish to plot a constant-pressure surface, say $p=p_{1}$, Equation (7) becomes

$$
z=\frac{p_{0}-p_{1}}{\rho \mathrm{~g}}+\frac{r^{2} \Omega^{2}}{2 \mathrm{~g}}=a+b r^{2}
$$

- Thus, the surfaces are paraboloids of revolution, concave upward, with their minimum points on the axis of rotation.

Determining the free surface position for rotation of a cylinder of fluid about its central axis.

- Similarly as in rigid body translation case, the position of the free surface is found by conserving the volume of fluid.
- Since the volume of a paraboloid is one-half of the base area times its height, the still-water level is exactly halfway between the high and low points of the free surface.
- The center of the fluid drops an amount

$$
\frac{h}{2}=\frac{\Omega^{2} R^{2}}{4 \mathrm{~g}}
$$

and the edges rise an equal amount.

Rigid Body Rotation - Example

EXAMPLE 2.14

The coffee cup in Example 2.13 is removed from the drag racer, placed on a turntable, and rotated about its central axis until a rigid-body mode occurs. Find (a) the angular velocity that will cause the coffee to just reach the lip of the cup and (b) the gage pressure at point A for this condition.

$$
\begin{aligned}
& \frac{h}{2}=\frac{\Omega^{2} R^{2}}{4 g}=\frac{\Omega^{2}(0.03)^{2}}{4(9.81)}=0.03 \\
& \therefore \Omega=36.2 \mathrm{rad} / \mathrm{s}=345 \mathrm{rpm}
\end{aligned}
$$

Since point A is at $(r, z)=(3 \mathrm{~cm},-4 \mathrm{~cm})$ and by putting the origin of coordinates r and z at the bottom of the free-surface depression, thus $p_{0}=0$ (i.e., gage pressure),

$$
\begin{aligned}
& p_{A}=p_{0}-\rho \mathrm{g} z+\frac{1}{2} \rho r^{2} \Omega^{2} \\
& =0-(1010)(9.81)(-0.04)+\frac{1}{2}(1010)(0.03)^{2}(36.2)^{2}=990 \mathrm{~Pa}
\end{aligned}
$$

(Note: This is about 43\% greater than the still-water pressure $p_{A}=694 \mathrm{~Pa}$)
The coffee cup placed on a turntable.

