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Newton’s 2nd Law of Motion
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• In general, for a body of mass 𝑚𝑚,
𝑚𝑚𝒂𝒂 = ∑𝑭𝑭

where, 𝒂𝒂 is the acceleration of the body and ∑𝑭𝑭 is the vector sum of the external forces 
acting on the body.

• For a fluid element,
𝑚𝑚𝒂𝒂 = 𝑭𝑭B + 𝑭𝑭S (1)

where, 
o 𝑭𝑭B is the body force due to the gravity, i.e., the weight of the fluid element
o 𝑭𝑭S is the surface force due to the pressure and viscous friction on the surface of the fluid element

• In fluids, often times the motion equation is written for a unit volume by using the 
relationship 𝑚𝑚 = 𝜌𝜌𝑉𝑉 and dividing Eq. (1) by the volume 𝑉𝑉,

𝜌𝜌𝒂𝒂 = 𝒇𝒇b + 𝒇𝒇s

where, 𝒇𝒇b and 𝒇𝒇s are the body and surface forces per unit volume.



Newton’s 2nd Law of Motion – Contd.
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• Body force (Weight of the fluid)

𝑭𝑭𝐵𝐵 = −𝑊𝑊�𝒌𝒌 = −𝜌𝜌g𝑉𝑉�𝒌𝒌

∴ 𝒇𝒇𝑏𝑏 = −𝜌𝜌g�𝒌𝒌

• Surface force
𝒇𝒇𝑠𝑠 = 𝒇𝒇𝑝𝑝 + 𝒇𝒇𝑣𝑣

where,
o 𝒇𝒇𝑝𝑝 = −𝛻𝛻𝑝𝑝 due to the pressure
o 𝒇𝒇𝑣𝑣 = 𝛻𝛻 ⋅ 𝝉𝝉 due to the viscous shear stress

• General motion equation for fluids

𝜌𝜌𝒂𝒂 = −𝜌𝜌g�𝒌𝒌 − 𝛻𝛻𝑝𝑝 + 𝛻𝛻 ⋅ 𝝉𝝉 (2)

Note: For one dimensional flow of Newtonian fluids, 
𝜏𝜏 = 𝜇𝜇 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
. This implies that the viscous shear stress (or 

the shear force) is caused by the relative motion 
between fluid particles.

The body force and the surface 
pressure force acting on a differential 
fluid element in the vertical direction.

Shear stresses that may cause a net 
angular acceleration about axis O.



Special Case: Fluids at Rest
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• For fluids at rest, i.e., with no motion, Eq. (2) can be simplified as

�𝜌𝜌𝒂𝒂
= 0

= −𝜌𝜌g�𝒌𝒌 − 𝛻𝛻𝑝𝑝 + �𝛻𝛻 ⋅ 𝝉𝝉
=0

or,
𝛻𝛻𝑝𝑝 = 𝜌𝜌𝐠𝐠 (3)

where, 𝐠𝐠 = −g�̂�𝐤. 
• If rewrite Eq. (3) in components,

𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕

= 0,
𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕

= 0,
𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕

= −𝜌𝜌g (4)

Thus, 𝑝𝑝 is independent of 𝜕𝜕 and 𝜕𝜕 (i.e., the pressure remains constant in any 
horizontal direction) and varies only in the vertical direction 𝜕𝜕 as a result of gravity.

• If 𝜌𝜌 is constant, the solution of Eq. (4) becomes

𝑝𝑝 = −𝛾𝛾𝜕𝜕

by taking 𝑝𝑝 = 0 at 𝜕𝜕 = 0. This is the hydrostatic pressure equation for incompressible 
fluids at rest.



Rigid Body Motion
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• In rigid-body motion, all particles are in combined translation and rotation, and 
there is no relative motion between particles. 

• With no relative motion, there are no strains or strain rates, so that the viscous 
term in Eq. (2) vanishes,

𝜌𝜌𝒂𝒂 = −𝜌𝜌g�𝒌𝒌 − 𝛻𝛻𝑝𝑝 + �𝛻𝛻 ⋅ 𝝉𝝉
=0

or,
𝛻𝛻𝑝𝑝 = 𝜌𝜌 𝐠𝐠 − 𝒂𝒂 (5)

where, 𝐠𝐠 = −g�𝒌𝒌.  

• Two simple rigid-motion cases of interest are
a) Rigid body translation: Constant linear acceleration 𝒂𝒂 = 𝑎𝑎𝑥𝑥�̂�𝒊 + 𝑎𝑎𝑧𝑧�𝒌𝒌
b) Rigid body rotation: Constant rotation 𝛀𝛀 = Ω�𝒌𝒌



Rigid Body Translation
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𝛻𝛻𝑝𝑝 = 𝜌𝜌 𝐠𝐠 − 𝒂𝒂 (5)
where,

𝐠𝐠 = −g�𝒌𝒌
𝒂𝒂 = 𝑎𝑎𝑥𝑥�̂�𝒊 + 𝑎𝑎𝑧𝑧�𝒌𝒌

Thus,

𝛻𝛻𝑝𝑝 =
𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕

�̂�𝒊 +
𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕

�𝒌𝒌 = −𝜌𝜌𝑎𝑎𝑥𝑥�̂�𝒊 − 𝜌𝜌 g + 𝑎𝑎𝑧𝑧 �𝒌𝒌

Equating like components,
𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕

= −𝜌𝜌𝑎𝑎𝑥𝑥
𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕

= −𝜌𝜌 g + 𝑎𝑎𝑧𝑧

The angle of constant pressure lines,

𝜃𝜃 = tan−1
𝑎𝑎𝑥𝑥

g + 𝑎𝑎𝑧𝑧

• In case of uniform rigid-body acceleration, Eq. (5) applies, 𝒂𝒂 having the same magnitude and 
direction for all particles.

• The vector sum of 𝐠𝐠 and −𝒂𝒂 gives the direction of the pressure gradient or the greatest rate of 
increase of 𝑝𝑝.

• Then, the surfaces of constant pressure must be perpendicular to the direction of pressure 
gradient and are thus tilted at a downward angle 𝜃𝜃.

Tilting of constant-pressure surfaces in a tank of liquid in rigid-body 
acceleration.



Rigid Body Translation – Contd.
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• One of the tilted lines (the surfaces of constant pressure) is the free surface, which is found by 
the requirement that the fluid retain its volume unless it spills.

• The rate of increase of pressure in the direction 𝐠𝐠 − 𝒂𝒂 is greater than in the ordinary hydrostatics 
and is given by

𝑑𝑑𝑝𝑝
𝑑𝑑𝑑𝑑

= 𝜌𝜌𝜌𝜌 where 𝜌𝜌 = 𝑎𝑎𝑥𝑥2 + g + 𝑎𝑎𝑧𝑧 2

Tilting of constant-pressure surfaces in a tank of liquid in rigid-body 
acceleration.

𝛻𝛻𝑝𝑝 = 𝜌𝜌 𝐠𝐠 − 𝒂𝒂 (5)
where,

𝐠𝐠 = −g�𝒌𝒌
𝒂𝒂 = 𝑎𝑎𝑥𝑥�̂�𝒊 + 𝑎𝑎𝑧𝑧�𝒌𝒌

Thus,

𝛻𝛻𝑝𝑝 =
𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕

�̂�𝒊 +
𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕

�𝒌𝒌 = −𝜌𝜌𝑎𝑎𝑥𝑥�̂�𝒊 − 𝜌𝜌 g + 𝑎𝑎𝑧𝑧 �𝒌𝒌

Equating like components,
𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕

= −𝜌𝜌𝑎𝑎𝑥𝑥
𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕

= −𝜌𝜌 g + 𝑎𝑎𝑧𝑧

The angle of constant pressure lines,

𝜃𝜃 = tan−1
𝑎𝑎𝑥𝑥

g + 𝑎𝑎𝑧𝑧



Rigid Body Translation – Example
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𝜃𝜃 = tan−1
𝑎𝑎𝑥𝑥
g = tan−1

7
9.81 = 35.5∘

Δ𝜕𝜕 = 3 tan 35.5∘ = 2.14 cm < 3 cm (no spilling)

𝑝𝑝𝐴𝐴 = 𝜌𝜌𝜌𝜌Δ𝑑𝑑 = 1010 7 2 + 9.81 2 0.07 + 0.0214 cos 35.5∘ = 906 Pa

(Note: When at rest, 𝑝𝑝𝐴𝐴 = 𝜌𝜌gℎrest = 1010 9.81 0.07 = 694 Pa)

Alternatively, since 𝑎𝑎𝑧𝑧 = 0 thus 𝜕𝜕𝑝𝑝
𝜕𝜕𝑧𝑧

= −𝜌𝜌g,

𝑝𝑝𝐴𝐴 = 𝜌𝜌gΔ𝜕𝜕 = 1010 9.81 0.07 + 0.0214 = 906 Pa

The coffee tilted during the acceleration.



Rigid Body Rotation
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• For a fluid rotating about the 𝜕𝜕 axis at a constant rate Ω without any translation, the fluid 
acceleration will be a centripetal term,

𝒂𝒂 = −𝑟𝑟Ω2�̂�𝒊𝒓𝒓
• From Equation (5) written in a cylindrical coordinate system,

𝛻𝛻𝑝𝑝 =
𝜕𝜕𝑝𝑝
𝜕𝜕𝑟𝑟

�̂�𝒊𝒓𝒓 +
𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕

�𝒌𝒌 = 𝜌𝜌 𝐠𝐠 − 𝒂𝒂 = 𝜌𝜌 𝑟𝑟Ω2�̂�𝒊𝒓𝒓 − g�𝒌𝒌
• Equating like components,

𝜕𝜕𝑝𝑝
𝜕𝜕𝑟𝑟

= 𝜌𝜌𝑟𝑟Ω2
𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕

= −𝜌𝜌g (6)

• By solving the two 1st-order PDE’s in Eq. (6),

𝑝𝑝 = 𝑝𝑝0 − 𝜌𝜌g𝜕𝜕 +
1
2
𝜌𝜌𝑟𝑟2Ω2 (7)

where, 𝑝𝑝0 is the pressure at 𝑟𝑟, 𝜕𝜕 = 0,0 .

• The pressure is linear in 𝜕𝜕 and quadratic 
(parabolic) in 𝑟𝑟.

Development of paraboloid constant-pressure surfaces in a 
fluid in rigid-body rotation. The dashed line along the direction 
of maximum pressure increase is an exponential curve.



Rigid Body Rotation – Contd.
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• Similarly as in rigid body translation case, the 
position of the free surface is found by conserving 
the volume of fluid.

• Since the volume of a paraboloid is one-half of 
the base area times its height, the still-water level 
is exactly halfway between the high and low 
points of the free surface.

• The center of the fluid drops an amount

ℎ
2

=
Ω2𝑅𝑅2

4g

and the edges rise an equal amount.   

• If we wish to plot a constant-pressure surface, say 𝑝𝑝 = 𝑝𝑝1, Equation (7) becomes

𝜕𝜕 =
𝑝𝑝0 − 𝑝𝑝1
𝜌𝜌g

+
𝑟𝑟2Ω2

2g
= 𝑎𝑎 + 𝑏𝑏𝑟𝑟2

• Thus, the surfaces are paraboloids of revolution, concave upward, with their minimum points 
on the axis of rotation.

Determining the free surface position for rotation of a 
cylinder of fluid about its central axis.



Rigid Body Rotation – Example
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The coffee cup placed on a turntable.

ℎ
2 =

Ω2𝑅𝑅2

4𝑔𝑔 =
Ω2 0.03 2

4(9.81) = 0.03

∴ Ω = 36.2 ⁄rad s = 345 rpm

Since point A is at 𝑟𝑟, 𝜕𝜕 = 3 cm,−4 cm and by putting the origin of 
coordinates 𝑟𝑟 and 𝜕𝜕 at the bottom of the free-surface depression, thus 𝑝𝑝0 = 0
(i.e., gage pressure),

𝑝𝑝𝐴𝐴 = 𝑝𝑝0 − 𝜌𝜌g𝜕𝜕 +
1
2𝜌𝜌𝑟𝑟

2Ω2

= 0 − 1010 9.81 −0.04 +
1
2 1010 0.03 2 36.2 2 = 990 Pa

(Note: This is about 43% greater than the still-water pressure 𝑝𝑝𝐴𝐴 = 694 Pa)
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