Fluids Kinematics (Acceleration) and Reynolds Transport Theorem (RTT)

9. 28. 2016

Hyunse Yoon, Ph.D.

Associate Research Scientist
IIHR-Hydroscience \& Engineering

Lagrangian vs. Eulerian Viewpoint

- Lagrangian: Keeps track of individual fluid particles,

$$
\begin{gathered}
\underline{V_{P}}(t)=\frac{d r_{P}(t)}{d t}=u_{P}(t) \hat{\boldsymbol{\imath}}+v_{P}(t) \hat{\boldsymbol{\jmath}}+w_{P}(t) \widehat{\boldsymbol{k}} \\
\underline{a_{P}}(t)=\frac{d V_{P}(t)}{d t}=\frac{d u_{P}(t)}{d t} \hat{\boldsymbol{\imath}}+\frac{d v_{P}(t)}{d t} \hat{\boldsymbol{\jmath}}+\frac{d w_{P}(t)}{d t} \widehat{\boldsymbol{k}}
\end{gathered}
$$

- Eulerian: Focuses on a fixed point $\underline{x}=x \hat{\boldsymbol{\imath}}+y \hat{\boldsymbol{\jmath}}+z \widehat{\boldsymbol{k}}$ in space,

$$
\begin{gathered}
\underline{V}(\underline{x}, t)=u(\underline{x}, t) \hat{\boldsymbol{\imath}}+v(\underline{x}, t) \hat{\boldsymbol{\jmath}}+w(\underline{x}, t) \widehat{\boldsymbol{k}} \\
\underline{a}(\underline{x}, t)=a_{x}(\underline{x}, t) \hat{\boldsymbol{\imath}}+a_{y}(\underline{x}, t) \hat{\boldsymbol{\jmath}}+a_{z}(\underline{x}, t) \widehat{\boldsymbol{k}}
\end{gathered}
$$

Acceleration in the Eulerian Approach

- For a simple 1D flow,

$$
\begin{gathered}
a_{x}=\lim _{\Delta t \rightarrow 0} \frac{u(x+\Delta x, t+\Delta t)-u(x, t)}{\Delta t} \\
=\lim _{\Delta t \rightarrow 0} \frac{u(x+\Delta x, t+\Delta t)-u(x, t+\Delta t)+u(x, t+\Delta t)-u(x, t)}{\Delta t} \\
=\lim _{\Delta t \rightarrow 0} \frac{u(x, t+\Delta t)-u(x, t)}{\Delta t}+\lim _{\substack{\Delta t \rightarrow 0 \\
(\Delta x \rightarrow 0)}} \frac{u(x+\Delta x, t+\Delta t)-u(x, t+\Delta t)}{\Delta x} \cdot \frac{\Delta x}{\Delta t} \\
\therefore a_{x}=\frac{\partial u(x, t)}{\partial t}+u(x, t) \cdot \frac{\partial u(x, t)}{\partial x}
\end{gathered}
$$

- For a general 3D flow,

$$
\begin{aligned}
& a_{x}=\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z} \\
& a_{y}=\frac{\partial v}{\partial t}+u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+w \frac{\partial v}{\partial z} \\
& a_{z}=\frac{\partial w}{\partial t}+u \frac{\partial w}{\partial x}+v \frac{\partial w}{\partial y}+w \frac{\partial w}{\partial z}
\end{aligned}
$$

or,

$$
\underline{a}=\frac{D \underline{V}}{D t}=\underbrace{\frac{\partial \underline{V}}{\partial t}}_{\text {local acc. }}+\underbrace{\underbrace{V \cdot \nabla} \underline{V}}_{\text {convective acc. }}
$$

Note:

$$
\frac{D}{D t}=\frac{\partial}{\partial t}+\underline{V} \cdot \nabla
$$

where,

$$
\nabla=\frac{\partial}{\partial x} \hat{\imath}+\frac{\partial}{\partial y} \hat{\jmath}+\frac{\partial}{\partial z} \hat{k}
$$

Referred to as the material derivative or total derivative or substantial derivative.

Example: Acceleration

- An incompressible 2D flow has the velocity components $u=2 y$ and $v=8 x$. Find (a) the acceleration and (b) the pressure distribution along a streamline that passes through the origin $(x, y)=(0,0)$ where the pressure is p_{0}. Assume incompressible and irrotational flow.

Velocity vector field $\underline{V}=2 y \hat{\imath}+8 x \hat{\jmath}$.
(a)

$$
\begin{gathered}
a_{x}=\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}=0+(2 y)(0)+8 x(2)=16 x \\
a_{y}=\frac{\partial v}{\partial t}+u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}=0+(2 y)(8)+(8 x)(0)=16 y \\
\therefore \underline{a}=a_{x} \hat{\imath}+a_{y} \hat{\boldsymbol{\jmath}}=16 x \hat{\imath}+16 y \hat{\jmath}
\end{gathered}
$$

Note:

$$
\begin{gathered}
a=|\underline{a}|=\sqrt{a_{x}^{2}+a_{y}^{2}}=\sqrt{(16 x)^{2}+(16 y)^{2}} \\
\therefore a=16 \sqrt{x^{2}+y^{2}}
\end{gathered}
$$

Example: Acceleration - Contd.

- Euler equation*

$$
\nabla p=-\rho \underline{a}
$$

or

$$
\begin{align*}
& \frac{\partial p}{\partial x}=-\rho a_{x}=-16 \rho x \tag{1}\\
& \frac{\partial p}{\partial y}=-\rho a_{y}=-16 \rho y \tag{2}
\end{align*}
$$

Integrate (1) w.r.t x,

$$
\begin{equation*}
\int \frac{\partial p}{\partial x} d x=\int(-16 \rho x) d x=-8 \rho x^{2}+f(y)=p \tag{3}
\end{equation*}
$$

Differentiate (3) w.r.t y, then by using (2),

$$
\frac{\partial p}{\partial y}=0+\frac{d f(y)}{d y}=-16 \rho y
$$

or

$$
\begin{equation*}
f(y)=\int(-16 \rho y) d y=-8 \rho y^{2}+C \tag{4}
\end{equation*}
$$

Example: Acceleration - Contd.

Combining (3) and (4),

$$
p=-8 \rho x^{2}-8 \rho y^{2}+C
$$

Since $p=p_{0}$ at $(x, y)=(0,0)$,

$$
p_{0}=0+0+C
$$

or

$$
C=p_{0}
$$

Finally,

$$
\begin{equation*}
\therefore p=p_{0}-8 \rho\left(x^{2}+y^{2}\right) \tag{5}
\end{equation*}
$$

Example: Acceleration - Contd.

Streamline equation

$$
\frac{d x}{u}=\frac{d y}{v}
$$

or

$$
\begin{equation*}
\frac{d x}{2 y}=\frac{d y}{8 x} \tag{6}
\end{equation*}
$$

Integrate (6) by using separation of variables, then

$$
\int 2 y d y=\int 8 x d x
$$

or

$$
y^{2}=4 x^{2}+C
$$

For the streamline through the origin $(x, y)=(0,0), C=0$. Thus,

Streamlines for the velocity field

$$
\underline{V}=2 y \hat{\imath}+8 x \hat{\boldsymbol{\jmath}} .
$$

$$
\begin{equation*}
\therefore y^{2}=4 x^{2} \tag{7}
\end{equation*}
$$

By plugging (7) into (5),

$$
p=p_{0}-8 \rho\left(x^{2}+4 x^{2}\right)
$$

Thus,

$$
\therefore p=p_{0}-40 \rho x^{2}
$$

Example: Acceleration - Contd.

Alternatively, by applying the Bernoulli equation,

$$
p+\frac{1}{2} \rho V^{2}=p_{0}+\frac{1}{2} \rho V_{0}^{2}
$$

or

$$
p=p_{0}+\frac{1}{2} \rho\left(V_{0}^{2}-V^{2}\right)
$$

where,

$$
V=|\underline{V}|=\sqrt{u^{2}+v^{2}}=\sqrt{4 y^{2}+64 x^{2}}
$$

Along the streamline $y^{2}=4 x$,

$$
V=\sqrt{4\left(4 x^{2}\right)+64 x^{2}}=\sqrt{80 x^{2}}
$$

and

$$
\left.V_{0}=V\right)_{x=0, y=0}=\sqrt{4(0)^{2}+64(0)^{2}}=0
$$

Thus,

$$
\therefore p=p_{0}+\frac{1}{2} \rho\left[(0)^{2}-\left(\sqrt{80 x^{2}}\right)^{2}\right]=\boldsymbol{p}_{\mathbf{0}}-\mathbf{4 0} \boldsymbol{\rho} \boldsymbol{x}^{2}
$$

Laws of Mechanics

1. Conservation of mass:

$$
\begin{aligned}
& \frac{d m}{d t}=0 \\
& \underline{F}=m \underline{a}=\frac{d}{d t}(m \underline{V})
\end{aligned}
$$

2. Conservation of linear momentum:
3. Conservation of angular momentum:

$$
\underline{M}=\frac{d \underline{H}}{d t}
$$

4. Conservation of Energy:

$$
\frac{d E}{d t}=\dot{Q}-\dot{W}
$$

- The laws apply to either solid or fluid systems
- Ideal for solid mechanics, where we follow the same system
- For fluids, the laws need to be rewritten to apply to a specific region in the neighborhood of our product (i.e., CV)

Extensive vs. Intensive Property

Governing Differential Equations (GDE's):

$$
\frac{d}{d t}(\underbrace{m, m \underline{V}, E}_{B})=(0, \underline{F}, \dot{Q}-\dot{W})
$$

- $\quad B=$ The amount of $m, m \underline{V}$, or E contained in the total mass m; Extensive property - Dependent on mass
- β (or b) = The amount of B per unit mass; Intensive property - Independent on mass

$$
\begin{gathered}
\beta \equiv \frac{d B}{d m} \\
B=\int_{V} \beta \underbrace{\rho d V}_{=d m}
\end{gathered}
$$

If homogeneous,

$$
\beta=\frac{B}{m} \quad \text { and } \quad B=\beta m
$$

B	$b=B / m$
m	1
$m \mathbf{V}$	\mathbf{V}
E	e

System vs. Control Volume

- System: A collection of matter of fixed identity
- Always the same atoms or fluid particles
- A specific, identifiable quantity of matter
- Control Volume (CV): A volume in space through which fluid may flow
- A geometric entity
- Independent of mass

Examples of CV

Reynolds Transport Theorem (RTT)

- An analytical tool to shift from describing the laws governing fluid motion using the system concept to using the control volume concept

RTT for a Simple Fixed CV

Variable area duct

--- Fixed control surface and system boundary at time t

At time t :

$$
\begin{aligned}
\mathrm{SYS} & =\mathrm{CV} \\
B_{\mathrm{sys}}(t) & =B_{\mathrm{CV}}(t)
\end{aligned}
$$

RTT for a Simple Fixed CV

(2)

- - Fixed control surface and system
boundary at time t
--- System boundary at time $t+\delta t$

At time $t+\delta t$:

$$
\begin{gathered}
\text { SYS }=(\mathrm{CV}-\mathrm{I})+\mathrm{II} \\
B_{\mathrm{sys}}(t+\delta t)=B_{\mathrm{CV}}(t+\delta t)-\delta B_{I}+\delta B_{I I}
\end{gathered}
$$

RTT for a Simple Fixed CV - Contd.
 - Time Rate of Change of $B_{\text {sys }}$

$$
\frac{D B_{\mathrm{sys}}}{D t}=\lim _{\delta t \rightarrow 0} \frac{B_{\mathrm{sys}}(t+\delta t)-B_{\mathrm{sys}}(t)}{\delta t}
$$

Since $B_{\mathrm{sys}}(t)=B_{\mathrm{CV}}(t)$ and $B_{\mathrm{sys}}(t+\delta t)=B_{\mathrm{CV}}(t+\delta t)-\delta B_{I}+\delta B_{I I}$

$$
\frac{D B_{\mathrm{sys}}}{D t}=\lim _{\delta t \rightarrow 0} \frac{\left\{B_{\mathrm{CV}}(\underline{x}, t+\delta t)-\delta B_{I}+\delta B_{I I}\right\}-B_{\mathrm{CV}}(\underline{x}, t)}{\delta t}
$$

$$
\therefore \underbrace{\frac{D B_{\text {sys }}}{D t}}_{\begin{array}{c}
\text { Time rate of } \tag{1}\\
\text { change of } B \\
\text { within the } \\
\text { system }
\end{array}}=\underbrace{\lim _{\delta t \rightarrow 0} \frac{B_{\mathrm{CV}}(\underline{x}, t+\delta t)-B_{\mathrm{CV}}(\underline{x}, t)}{\delta t}}_{\begin{array}{c}
\text { 1) Change of } B \\
\text { within CV over } \delta t
\end{array}}+\underbrace{\lim _{\delta t \rightarrow 0}^{\delta t} \frac{\delta B_{I I}}{\delta t}}_{\begin{array}{c}
\text { 2) Amount of } B \\
\text { flowing out } \\
\text { through CS } \\
\text { over } \delta t
\end{array}}-\underbrace{\underbrace{\lim _{\text {Am }} \frac{\delta B_{I}}{\delta t}}_{\substack{\delta t \rightarrow 0}}}_{\begin{array}{c}
\text { 3) Amountt of } B \\
\text { flowing in } \\
\text { through CS } \\
\text { over } \delta t
\end{array}}
$$

RTT for a Simple Fixed CV - Contd. - The first term of RHS of Eq.(1)

$$
\lim _{\delta t \rightarrow 0} \frac{B_{\mathrm{CV}}(\underline{x}, t+\delta t)-B_{\mathrm{CV}}(\underline{x}, t)}{\delta t}=\frac{\partial B_{\mathrm{CV}}}{\partial t}
$$

In a general form,

$$
B_{\mathrm{CV}}=\int_{\mathrm{CV}} \underbrace{\underbrace{\rho d V}_{=d m}}_{=d B}
$$

Thus,

$$
\frac{\partial B_{\mathrm{CV}}}{\partial t}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} \beta \rho d V
$$

RTT for a Simple Fixed CV - Contd. - The $2^{\text {nd }}$ term of RHS of Eq.(1)

$$
\delta V_{I I}=A_{2} \cdot V_{2} \delta t
$$

and

$$
\delta m_{\text {II }}=\rho \delta V_{I I}=\rho V_{2} A_{2} \delta t
$$

The amount of B flowing out of CV through A_{2} over a short time δt :

$$
\therefore \delta B_{\mathrm{II}}=\beta \delta m_{\mathrm{II}}=\beta \rho V_{2} A_{2} \delta t
$$

Thus,

$$
\lim _{\delta t \rightarrow 0} \frac{\delta B_{I I}}{\delta t}=\beta \rho V_{2} A_{2} \equiv \dot{B}_{\mathrm{out}}
$$

In a general form (see Appendix),

$$
\dot{B}_{\mathrm{out}}=\int_{C S_{\mathrm{out}}} \beta \rho \underline{V} \cdot \underline{n} d A
$$

RTT for a Simple Fixed CV - Contd. - The $3^{\text {rd }}$ term of RHS of Eq.(1)

$$
\delta V_{7}=A_{1} \cdot V_{1} \delta t
$$

and

$$
\delta m_{\mathrm{I}}=\rho \delta V_{1}=\rho V_{1} A_{1} \delta t
$$

The amount of B flowing in to CV through A_{1} over a short time δt :

$$
\therefore \delta B_{\mathrm{I}}=\beta \delta m_{\mathrm{I}}=\beta \rho V_{1} A_{1} \delta t
$$

Thus,

$$
\lim _{\delta t \rightarrow 0} \frac{\delta B_{I}}{\delta t}=\beta \rho V_{1} A_{1} \equiv \dot{B}_{\mathrm{in}}
$$

In a general form (see Appendix),

$$
\dot{B}_{\mathrm{in}}=-\int_{C S_{\mathrm{in}}} \beta \rho \underline{V} \cdot \underline{n} d A
$$

RTT for a Simple Fixed CV - Contd.

Consequently, the relationship between the time rate of change of B for the system and that for the CV is given by,

$$
\frac{D B_{\text {sys }}}{D t}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} \beta \rho d \mathrm{~V}+\underbrace{\int_{C S_{\text {out }}} \beta \rho \underline{V} \cdot \widehat{\boldsymbol{n}} d A}_{\dot{B}_{\text {out }}}-\underbrace{\left(-\int_{C S_{\mathrm{in}}} \beta \rho \underline{V} \cdot \widehat{\boldsymbol{n}} d A\right)}_{\dot{B}_{\text {in }}}
$$

With the fact that $C S=C S_{\text {out }}+C S_{\text {in }}$,

$$
\frac{D B_{\mathrm{sys}}}{D t}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} \beta \rho d V+\int_{\mathrm{CS}} \beta \rho \underline{V} \cdot \widehat{\boldsymbol{n}} d A
$$

| Time rate of
 change of B
 within a system$=$Time rate of
 change of B
 within CV |
| :--- |$+$| Net flux of B |
| :--- |
| through CS |
| $\dot{B}_{\text {out }}-\dot{B}_{\text {in }}$ |

Appendix: RTT for a Fixed CV

RTT for a Fixed CV

At time t : SYS = CV

$$
B_{s y s}(t)=B_{C V}(t)
$$

At time $t+\delta t: S Y S=(C V-I)+I I$

$$
\begin{aligned}
& B_{s y s}(t+\delta t) \\
& =B_{C V}(t+\delta t)-d B_{I}+d B_{I I}
\end{aligned}
$$

--- Fixed control surface and system boundary at time t
--- System boundary at time $t+\delta t$

RTT for a Fixed CV - Contd.
 - Time Rate of Change of $B_{s y s}$

$$
\begin{aligned}
\frac{D B_{s y s}}{D t} & =\lim _{\delta t \rightarrow 0} \frac{B_{s y s}(t+\delta t)-B_{\text {sys }}(t)}{\delta t} \\
& =\lim _{\delta t \rightarrow 0} \frac{\left\{B_{C V}(\underline{x}, t+\delta t)-\delta B_{I}+\delta B_{I I}\right\}-B_{C V}(\underline{x}, t)}{\delta t}
\end{aligned}
$$

RTT for a Fixed CV - Contd.
 - The first term of RHS of Eq.(1)

$$
\lim _{\delta t \rightarrow 0} \frac{B_{C V}(\underline{x}, t+\delta t)-B_{C V}(\underline{x}, t)}{\delta t}=\underbrace{\frac{\partial B_{C V}}{\partial t}=\frac{\partial}{\partial t} \int_{C V} \beta \rho d V}_{\begin{array}{c}
\text { Time rate of change of } \\
B \text { within CV }
\end{array}}
$$

RTT for a Fixed CV - Contd. - The $2^{\text {nd }}$ term of RHS of Eq.(1)

$$
\delta m_{\text {out }}=\rho \delta V
$$

and

$$
\delta \forall=\delta A \cdot \delta \ell_{n}=\delta A \cdot(\underbrace{\delta \ell}_{=V \delta t} \cos \theta)=\delta A \cdot(V \delta t \cos \theta)
$$

Thus, the amount of B flowing out of CV through δA over a short time δt :

$$
\therefore \delta B_{\text {out }}=\beta \delta m_{\text {out }}=\beta \rho V \cos \theta \delta t \delta A
$$

(a)

(c)

RTT for a Fixed CV - Contd. - The $2^{\text {nd }}$ term of RHS of Eq.(1) - Contd.

By integrating $\delta B_{\text {out }}$ over the entire outflow portion of CS ,

$$
\delta B_{I I}=\delta t \int_{C S_{\text {out }}} \beta \rho V \cos \theta d A
$$

Thus,

$$
\lim _{\delta t \rightarrow 0} \frac{\delta B_{I I}}{\delta t}=\int_{C S_{\mathrm{out}}} \beta \rho \underbrace{V \cos \theta}_{V_{n}} d A \equiv \dot{B}_{\mathrm{out}}
$$

i.e., Out flux of B through CS

Note that $V \cos \theta=\underline{V} \cdot \widehat{\boldsymbol{n}}$,

$$
\therefore \dot{B}_{\text {out }}=\int_{C S_{\text {out }}} \beta \rho \underline{V} \cdot \widehat{\boldsymbol{n}} d A
$$

RTT for a Fixed CV - Contd.
 - The $3^{\text {rd }}$ term of RHS of Eq.(1)

$$
\delta m_{i n}=\rho \delta V
$$

and

$$
\delta \forall=\delta A \cdot \delta \ell_{n}=\delta A \cdot(\underbrace{\delta \ell}_{=V \delta t}(-\underbrace{\cos \theta}_{<0}))=\delta A \cdot(-V \delta t \cos \theta)
$$

Thus, the amount of B flowing out of CV through δA over a short time δt :

$$
\therefore \delta B_{\mathrm{in}}=\beta \delta m_{\mathrm{in}}=-\beta \rho V \cos \theta \delta t \delta A
$$

(c)

RTT for a Fixed CV - Contd.
 - The $3^{\text {rd }}$ term of RHS of Eq.(1) - Contd.

By integrating $\delta B_{\text {out }}$ over the entire outflow portion of CS ,

$$
\delta B_{I}=-\delta t \int_{C S_{\mathrm{in}}}(\beta \rho V \cos \theta) d A
$$

Thus,

$$
\lim _{\delta t \rightarrow 0} \frac{\delta B_{I}}{\delta t}=-\int_{C S_{\mathrm{in}}}(\beta \rho V \cos \theta) d A \equiv \dot{B}_{\mathrm{in}}
$$

i.e., influx of B through CS

Note that $V \cos \theta=\underline{V} \cdot \widehat{\boldsymbol{n}}$,

$$
\therefore \dot{B}_{\text {in }}=-\int_{C S_{\text {in }}} \beta \rho \underline{V} \cdot \widehat{\boldsymbol{n}} d A
$$

RTT for a Simple Fixed CV - Contd.

Consequently, the relationship between the time rate of change of B for the system and that for the CV is given by,

$$
\frac{D B_{\text {sys }}}{D t}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} \beta \rho d \mathrm{~V}+\underbrace{\int_{C S_{\text {out }}} \beta \rho \underline{V} \cdot \widehat{\boldsymbol{n}} d A}_{\dot{B}_{\text {out }}}-\underbrace{\left(-\int_{C S_{\mathrm{in}}} \beta \rho \underline{V} \cdot \widehat{\boldsymbol{n}} d A\right)}_{\dot{B}_{\text {in }}}
$$

With the fact that $C S=C S_{\text {out }}+C S_{\text {in }}$,

$$
\frac{D B_{\mathrm{sys}}}{D t}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} \beta \rho d V+\int_{\mathrm{CS}} \beta \rho \underline{V} \cdot \widehat{\boldsymbol{n}} d A
$$

| Time rate of
 change of B
 within a system$=$Time rate of
 change of B
 within CV |
| :--- |$+$| Net flux of B |
| :--- |
| through CS |
| $\dot{B}_{\text {out }}-\dot{B}_{\text {in }}$ |

