Reynolds Transport Theorem and Continuity Equation

9. 30. 2016

Hyunse Yoon, Ph.D.

Associate Research Scientist
IIHR-Hydroscience \& Engineering

RTT for Arbitrary Fixed CV

--- Fixed control surface and system boundary at time t
--- System boundary at time $t+\delta t$
Control volume (CV) and system for flow through an arbitrary, fixed control volume

B	$b=B / m$
m	1
$m \mathbf{V}$	\mathbf{V}
E	e

The relationship between the time rate of B for a system and that for the control volume is given by

$$
\underbrace{\frac{D B_{\text {sys }}}{D t}}_{\begin{array}{c}
\text { Time rate of } \\
\text { change of B } \\
\text { within a system }
\end{array}}=\underbrace{\frac{d B_{\mathrm{CV}}}{d t}}_{\begin{array}{c}
\text { Time rate of } \\
\text { chagne of B } \\
\text { within CV }
\end{array}}+\underbrace{\dot{B}_{\text {out }}}_{\begin{array}{c}
\text { Outflux of B } \\
\text { through CS }
\end{array}}-\underbrace{\dot{B}_{\mathrm{in}}}_{\begin{array}{c}
\text { Influx of B } \\
\text { through CS }
\end{array}}
$$

For an arbitrary fixed CV,

$$
\begin{gathered}
B_{\mathrm{CV}}=\int_{\mathrm{CV}} \beta \rho d V \\
\dot{B}_{\text {out }}=\int_{\mathrm{CS}_{\text {out }}} \beta \rho \underline{V} \cdot \underline{n} d A \\
\dot{B}_{\text {in }}=-\int_{\mathrm{CS}_{\text {in }}} \beta \rho \underline{V} \cdot \underline{n} d A
\end{gathered}
$$

or,

$$
\frac{D B_{\text {sys }}}{D t}=\frac{d}{d t} \int_{\mathrm{CV}} \beta \rho d V+\int_{\mathrm{CS}} \beta \rho \underline{V} \cdot \underline{n} d A
$$

Uniform Flow Across Discrete CS

Typical control volume with more than one inlet
At the $\mathrm{ith}^{\text {th }}$ outlet,

$$
\dot{B}_{\text {out }, i}=\int_{\mathrm{CS}_{\text {out } i} i} \beta \rho \underline{V}_{i} \cdot \underline{n}_{i} d A=\beta_{i} \rho_{i} V_{i} A_{i}
$$

At the $j^{\text {th }}$ inlet,

$$
\dot{B}_{\mathrm{in}, j}=\int_{\mathrm{CS}} \beta \rho \underline{V}_{j} \cdot \underline{n}_{j} d A=\beta_{j} \rho_{j} V_{j} A_{j}
$$

where, $V=|\underline{V}|$.

Thus, the surface integrals for the flux terms in RTT can be replaced with simple summations at the inlets and outlets,

$$
\frac{D B_{\mathrm{sys}}}{D t}=\int_{\mathrm{CV}} \frac{\partial}{\partial t}(\beta \rho) d \Downarrow+\sum_{i}\left(\beta_{i} \rho_{i} V_{i} A_{i}\right)_{\mathrm{out}}-\sum_{j}\left(\beta_{j} \rho_{j} V_{j} A_{j}\right)_{\mathrm{in}}
$$

or

$$
\frac{D B_{\text {sys }}}{D t}=\int_{\mathrm{CV}} \frac{\partial}{\partial t}(\beta \rho) d \Downarrow+\sum_{i}\left(\beta_{i} \dot{m}_{i}\right)_{\mathrm{out}}-\sum_{j}\left(\beta_{j} \dot{m}_{j}\right)_{\mathrm{in}}
$$

where,,$\dot{m}=\rho V A=\rho Q$, and $Q=V A$

Leibniz Integral Rule

Leibnitz theorem allows differentiation of an integral of which limits of integration are functions of the variable (the time t for our case) with which you need to differentiate.
For 1D,

$$
\frac{d}{d t} \int_{a(t)}^{b(t)} f(x, t) d x=\int_{a(t)}^{b(t)} \frac{\partial f}{\partial t} d x+f(b(t), t) \cdot b^{\prime}(t)-f(a(t), t) \cdot a^{\prime}(t)
$$

As a special case, if $a(t)$ and $b(t)$ are fixed values, e.g., constants x_{0} and x_{1}, respectively,

$$
\frac{d}{d t} \int_{x_{0}}^{x_{1}} f(x, t) d x=\int_{x_{0}}^{x_{1}} \frac{\partial f}{\partial t} d x
$$

Thus, for a fixed CV the RTT can also be written as

$$
\therefore \frac{D B_{\mathrm{sys}}}{D t}=\int_{\mathrm{CV}} \frac{\partial}{\partial t}(\beta \rho) d \forall+\int_{\mathrm{CS}} \beta \rho \underline{V} \cdot \underline{n} d A
$$

Steady Effects

For a steady flow,

$$
\frac{\partial(\quad)}{\partial t} \equiv 0
$$

Thus, the RTT can be simplified as

$$
\frac{D B_{\mathrm{sys}}}{D t}=\int_{\mathrm{CV}} \frac{\partial /}{\partial t}(\beta \rho) d V+\int_{\mathrm{CS}} \beta \rho \underline{V} \cdot \underline{n} d A=\int_{\mathrm{CS}} \beta \rho \underline{V} \cdot \underline{n} d A
$$

Which indicate that for steady flows the amount of B within the CV does not change with time. If the flow is uniform across discrete CS's,

$$
\frac{D B_{\text {sys }}}{D t}=\sum_{i}\left(\beta_{i} \dot{m}_{i}\right)_{\mathrm{out}}-\sum_{j}\left(\beta_{j} \dot{m}_{j}\right)_{\mathrm{in}}
$$

Gauss's Theorem

Suppose V is a volume in 3D space and has a piecewise smooth boundary S. If \underline{F} is a continuously differentiable vector field defined on a neighborhood of \forall, then

$$
\int_{S} \underline{F} \cdot \underline{n} d S=\int_{V} \nabla \cdot \underline{F} d \forall
$$

This equation is also known as the 'Divergence theorem.' Thus, the two integral terms in the RTT for a fixed CV can be combined into a single volume integral such that,

$$
\frac{D B_{\text {sys }}}{D t}=\int_{\mathrm{CV}}\left[\frac{\partial}{\partial t}(\beta \rho)+\nabla \cdot(\beta \rho \underline{V})\right] d V
$$

This form of RTT will be used in Chapter 6 Differential Analysis.

Moving CV

- For most fluids problems, the CV may be considered as a fixed volume. There are, however, situations for which the analysis is simplified if the CV is allowed to move (or deform).
- We consider a CV that moves with a constant velocity \mathbf{V}_{cv} without changes in its shape, size, and orientation with time.

RTT for Moving CV - Contd.

- For a moving (but not deforming) CV, the only difference that needs to be considered is that fact that relative to the moving CV the fluid velocity observed is the relative velocity $\underline{V}_{r}=\underline{V}-\underline{V}_{\mathrm{CV}}$, not the absolute velocity \underline{V}. (Note, \mathbf{W} is used to denote \underline{V}_{r} in out text book.)
- Thus, the RTT for a moving CV with constant velocity is given by

$$
\frac{D B_{\mathrm{sys}}}{D t}=\frac{d}{d t} \int_{\mathrm{CV}} \beta \rho d V+\int_{\mathrm{CS}} \beta \rho \underline{V_{r}} \cdot \underline{n} d A
$$

RTT for Moving and Deforming CV

$$
\frac{d B_{\mathrm{sys}}}{d t}=\frac{d}{d t} \int_{\mathrm{CV}} \beta \rho d V+\int_{C S} \beta \rho\left(\boldsymbol{V}_{\boldsymbol{r}} \cdot \widehat{\boldsymbol{n}}\right) d A^{*}
$$

The most general case where both CV and CS change their shape and location with time $\boldsymbol{V}_{r}=\boldsymbol{V}(\boldsymbol{x}, t)-\boldsymbol{V}_{S}(\boldsymbol{x}, t)$

- $V_{S}(x, t)$: Velocity of CS
- $V(x, t)$: Fluid velocity in the coordinate system in which the V_{s} is observed
- V_{r} : Relative velocity of fluid seen by an observer riding on the CV
*Ref) Fluid Mechanics by Frank M. White, McGraw Hill

Example 1

4.68 The wind blows across a fleld with an approximate velocity profile as shown in Fig. P4, 73, Ese Eq. 4.16 with the parameter b equal to the velocity to detemmite the momentum fowrate actoss the verticat surface A-B, which is of unit cepth into the obser:

$$
\begin{equation*}
\dot{B}_{\mathrm{out}}=\int_{C S_{\text {out }}} \rho b \underline{V} \cdot \widehat{\boldsymbol{n}} d A \tag{4.16}
\end{equation*}
$$

For momentum $B=m \underline{V}$, the intensive parameter $b(\operatorname{or} \beta)=B / m=\underline{V}$. Thus, for $\mathrm{CS}_{\text {out }}=A B$ of unit depth,

$$
\dot{B}_{\mathrm{out}}=\int_{A B} \rho \underline{V} \underline{V} \cdot \widehat{\boldsymbol{n}} d A
$$

where, $\underline{V}=\left(\frac{15}{10}\right) y \hat{\imath}$ for $0 \leq y \leq 10$ and $\underline{V}=15 \hat{\imath}$ for $10 \leq y \leq 20$ and $\rho=0.00238$ slugs $/ \mathrm{ft}^{3}$. Thus,

$$
\begin{aligned}
& \qquad \dot{B}_{\text {out }}=\int_{0}^{10} \rho\left(\frac{15}{10} y \hat{\imath}\right)\left(\frac{15}{10} y \hat{\boldsymbol{\imath}} \cdot \hat{\boldsymbol{\imath}}\right)(1) d y+\int_{10}^{20} \rho(15 \hat{\boldsymbol{\imath}})(15 \hat{\boldsymbol{\imath}} \cdot \hat{\boldsymbol{\imath}})(1) d y \\
& =\rho \hat{\boldsymbol{\imath}}\left[\int_{0}^{10}\left(\frac{15}{10} y\right)^{2} d y+\int_{10}^{20}(15)^{2} d y\right]=(0.00238) \hat{\boldsymbol{\imath}}\left[\left.\frac{225}{100} \cdot \frac{y^{3}}{3}\right|_{0} ^{10}+\left.225 y\right|_{10} ^{20}\right]=7.14 \hat{\boldsymbol{\imath}} \mathrm{slug} \cdot \mathrm{ft} / \mathrm{s}^{2} \\
& =7.14 \hat{\boldsymbol{\imath}} \mathrm{lbf}
\end{aligned}
$$

Example 2

Given:

- Water flow ($\rho=$ constant)
- $D_{1}=10 \mathrm{~cm} ; D_{2}=15 \mathrm{~cm}$
- $V_{1}=10 \mathrm{~cm} / \mathrm{s}$
- Steady flow

Find: V_{2} to satisfy the mass conservation?

RTT for fixed CV:

$$
\frac{D B_{\text {sys }}}{D t}=\int_{\mathrm{CV}} \frac{\partial}{\partial t}(\beta \rho) d \forall+\int_{\mathrm{CS}} \beta \rho \underline{V} \cdot \underline{n} d A
$$

For the mass conservation, $B=m$ and $\beta=1$,

$$
\therefore \frac{D m_{\text {sys }}}{D t}=0=\int_{\mathrm{CV}} \frac{\partial \rho^{\prime}}{\partial t} d V+\int_{\mathrm{CS}} \rho \underline{V} \cdot \underline{n} d A
$$

Example 2 - Contd.

Also, since the flow is uniform across discrete CS,

$$
\frac{D B_{s y s}}{D t}=\sum_{i}\left(\beta_{i} \dot{m}_{i}\right)_{\mathrm{out}}-\sum_{j}\left(\beta_{j} \dot{m}_{j}\right)_{\mathrm{in}}
$$

with $B=m$ and $\beta=1$ for one outlet and one inlet,

$$
0=m_{2}-m_{1}
$$

or

$$
\rho_{1} V_{1} A_{1}=\rho_{2} V_{2} A_{2}
$$

Since $\rho_{1}=\rho_{2}$,

$$
V_{1} A_{1}=V_{2} A_{2}
$$

Thus,

$$
V_{2}=\frac{A_{1}}{A_{2}} V_{1}=\left(\frac{D_{1}}{D_{2}}\right)^{2} V_{1}=\left(\frac{10 \mathrm{~cm}}{15 \mathrm{~cm}}\right)^{2}(10)=4.4 \mathrm{~cm} / \mathrm{s}
$$

Example 3

Given:

- $D_{1}=5 \mathrm{~cm} ; D_{2}=7 \mathrm{~cm}$
- $V_{1}=3 \mathrm{~m} / \mathrm{s}$
- $Q_{3}=V_{3} A_{3}=0.01 \mathrm{~m}^{3} / \mathrm{s}$
- $h=$ constant (i.e., steady flow)
- $\rho_{1}=\rho_{2}=\rho_{3}=\rho$ for water (incompressible)

Find: V_{2} to satisfy the mass conservation ?

RTT for a steady and uniform flow across discrete CS:

$$
0=\sum_{i}\left(\dot{m}_{i}\right)_{\mathrm{out}}-\sum_{j}\left(\dot{m}_{j}\right)_{\mathrm{in}}
$$

where, $\dot{m}=\rho Q=\rho V A$. With one outlet and two inlets,

$$
0=\rho V_{2} A_{2}-\rho V_{1} A_{1}-\rho Q_{3}
$$

By solving for V_{2},

$$
V_{2}=\frac{V_{1} A_{1}+Q_{3}}{A_{2}}=\frac{(3)(\pi)(0.05)^{2} / 4+(0.01)}{(\pi)(0.07)^{2} / 4}=4.13 \mathrm{~m} / \mathrm{s}
$$

Example 4

An airplane moves forward at a speed of $971 \mathrm{~km} / \mathrm{hr}$. The front area of the jet engine is $0.80 \mathrm{~m}^{2}$ and the entering air density is $0.736 \mathrm{~kg} / \mathrm{m}^{3}$. A stationary observer determines that relative to the Earth, the jet engine exhaust gases move away from the engine with a speed of $1050 \mathrm{~km} / \mathrm{hr}$. The engine exhaust area is $0.558 \mathrm{~m}^{2}$, and the exhaust gas density is $0.515 \mathrm{~kg} / \mathrm{m}^{3}$. Estimate the mass flowrate of fuel into the engine in $\mathrm{kg} / \mathrm{hr}$.

Example 4 - Contd.

$\frac{D B_{\text {sys }}}{D t}=\frac{d}{d t} \int_{\mathrm{CV}} \beta \rho d V+\int_{\mathrm{CS}} \beta \rho \underline{V_{r}} \cdot \underline{n} d A$

Assuming 1D flow,

$$
-\dot{m}_{\text {fuel }}-\rho_{1} A_{1} V_{r 1}+\rho_{2} A_{2} V_{r 2}=0
$$

or

$$
\dot{m}_{\mathrm{fuel}}=\rho_{2} A_{2} V_{r 2}-\rho_{1} A_{1} V_{r 1}
$$

Since

$$
\begin{gathered}
V_{r 1}=V_{1}-V_{\text {plane }}=0-(-971)=971 \mathrm{~km} / \mathrm{hr} \\
V_{r 2}=V_{2}-V_{\text {plane }}=1050-(-971)=2021 \mathrm{~km} / \mathrm{hr}
\end{gathered}
$$

Thus,

$$
\begin{aligned}
& \dot{m}_{\text {fuel }} \\
& =(0.515)(0.558)(2021)(1000 \mathrm{~m} / \mathrm{km}) \\
& -(0.515)(0.558)(2021)(1000 \mathrm{~m} / \mathrm{km})=(580,800-571,700) \\
& =9100 \mathrm{~kg} / \mathrm{hr}
\end{aligned}
$$

Continuity Equation (Ch. 5.1)

RTT with $B=$ mass and $\beta=1$,

$$
\underbrace{0=\frac{D m_{\text {sys }}}{D t}}_{\text {mass conservatoin }}=\frac{d}{d t} \int_{\mathrm{CV}} \rho d V+\int_{\mathrm{CS}} \rho \underline{V} \cdot \widehat{\boldsymbol{n}} d A
$$

or

$$
\underbrace{\int_{\mathrm{CS}} \rho \underline{V} \cdot \widehat{\boldsymbol{n}} d A}_{\begin{array}{c}
\text { Net rate of outflow } \\
\text { of mass across } \mathrm{CS}
\end{array}}=\underbrace{-\frac{d}{d t} \int_{\mathrm{CV}} \rho d V}_{\begin{array}{c}
\text { Rate of decrease of } \\
\text { mass within } \mathrm{CV}
\end{array}}
$$

Note: Incompressible fluid ($\rho=$ constant)

$$
\int_{C S} \underline{V} \cdot \widehat{\boldsymbol{n}} d A=-\frac{d}{d t} \int_{C V} d \forall \quad \text { (Conservation of volume) }
$$

Simplifications

1. Steady flow

$$
\int_{\mathrm{CS}} \rho \underline{V} \cdot \widehat{\boldsymbol{n}} d A=0
$$

2. If $\underline{V}=$ constant over discrete CS's (i.e., one-dimensional flow)

$$
\int_{\mathrm{CS}} \rho \underline{V} \cdot \widehat{\boldsymbol{n}} d A=\sum_{\text {out }} \rho V A-\sum_{\text {in }} \rho V A
$$

3. Steady one-dimensional flow in a conduit

$$
(\rho V A)_{\text {out }}-(\rho V A)_{\text {in }}=0
$$

or

$$
\rho_{2} V_{2} A_{2}-\rho_{1} V_{1} A_{1}=0
$$

For $\rho=$ constant

$$
V_{1} A_{1}=V_{2} A_{2} \quad\left(\text { or } Q_{1}=Q_{2}\right)
$$

Some useful definitions

- Mass flux (or mass flow rate) $\dot{m}=\int_{A} \rho \underline{V} \cdot \underline{d A} \quad$ (= $\rho V A$ for uniform flow)
- Volume flux (flow rate)
$Q=\int_{A} \underline{V} \cdot \underline{d A} \quad(=V A$ for uniform flow $)$
Note: $\underline{d A}=\widehat{\boldsymbol{n}} d A$
- Average velocity

$$
\bar{A}=\frac{Q}{A}=\frac{1}{A} \int_{A} \underline{V} \cdot \underline{d A}
$$

- Average density
$\bar{\rho}=\frac{1}{A} \int_{A} \rho d A$
Note: $\dot{m} \neq \bar{\rho} Q$ unless $\rho=$ constant

Example 5

Estimate the time required to fill with water a cone-shaped container 5 ft hight and 5 ft across at the top if the filling rate is $20 \mathrm{gal} / \mathrm{min}$.

Apply the RTT for conservation of mass, i.e., $\beta=1$

$$
0=\frac{d}{d t} \int_{\mathrm{CV}} \rho d \forall+\int_{\mathrm{CS}} \rho \underline{V} \cdot \widehat{\boldsymbol{n}} d A
$$

For incompressible fluid (i.e., $\rho=$ constant) and one inlet,

$$
0=\frac{d}{d t} \underbrace{\int_{\mathrm{CV}} d \forall}_{=V(t)}-\underbrace{(V A)_{\mathrm{in}}}_{=Q}
$$

Example 4 - Contd.

Volume of the cone at time t,

$$
\forall(t)=\frac{\pi D^{2}}{12} h(t)
$$

Flow rate at the inlet,

$$
Q=\left(20 \frac{\mathrm{gal}}{\mathrm{~min}}\right)\left(231 \frac{\mathrm{in}^{3}}{\mathrm{gal}^{2}}\right) /\left(1,728 \frac{\mathrm{in}^{3}}{\mathrm{ft}^{3}}\right)=2.674 \mathrm{ft}^{3} / \mathrm{min}
$$

The continuity eq. becomes

$$
0=\frac{d}{d t}\left(\frac{\pi D^{2}}{12} \cdot h\right)-Q
$$

or

$$
\begin{equation*}
\frac{d h}{d t}=\frac{12 Q}{\pi D^{2}} \tag{1}
\end{equation*}
$$

Example 4 - Contd.

Solve the $1^{\text {st }}$ order ODE for $h(t)$,

$$
h(t)=\int_{0}^{t} \frac{12 Q}{\pi D^{2}} d t=\frac{12 Q \cdot t}{\pi D^{2}}
$$

Thus, the time for $h=5 \mathrm{ft}$ is

$$
t=\frac{\pi D^{2} h}{12 Q}=\frac{\pi(5 \mathrm{ft})^{2}(5 \mathrm{ft})}{(12)\left(2.674 \mathrm{ft}^{3} / \mathrm{min}\right)}=12.2 \mathrm{~min}
$$

