Review for Exam 1

10. 10. 2016

Hyunse Yoon, Ph.D.
Associate Research Scientist
IIHR-Hydroscience \& Engineering
e-mail: hyun-se-yoon@uiowa.edu

Definition of Fluid

- Fluid: Deforms continuously (i.e., flows) when subjected to a shearing stress
- Solid: Resists to shearing stress by a static deflection
- No-slip condition: No relative motion between fluid and solid boundary at the contact
- The fluid "sticks" to the solid boundaries

The fluid in contact with the lower plate is stationary, whereas the fluid in contact with the upper moving plate moves at speed V.

Dimensions and Units

- Primary dimensions (or fundamental dimensions): Mass $\{M\}$, Length $\{L\}$, Time $\{T\}$, and Temperature $\{\Theta\}$.
- Secondary dimensions (or derived dimensions): All other dimensions expressed in terms of $\{M\},\{L\},\{T\}$, and $\{\Theta\}$. For example,

$$
\text { Force }=\text { Mass } \times \text { Acceleration, }\{\mathrm{F}\}=\left\{\mathrm{M} \cdot \mathrm{~L} / \mathrm{T}^{2}\right\}
$$

- SI units (The International System) : The basic units are kilogram (kg), meter (m), and second (s). The force unit is the newton (N),

$$
1 \mathrm{~N}=1 \mathrm{~kg} \cdot 1 \mathrm{~m} / \mathrm{s}^{2}
$$

- BG units (The British Gravitational System): The basic units are slugs (slug), foot (ft), and second (s). The force unit is the pound-force (lbf),

$$
1 \mathrm{lbf}=1 \mathrm{slug} \cdot 1 \mathrm{ft} / \mathrm{s}^{2}
$$

Primary dimension	SI unit	BG unit	Conversion factor
Mass $\{M\}$	Kilogram (kg)	Slug	$1 \mathrm{slug}=14.5939 \mathrm{~kg}$
Length $\{L\}$	Meter (m)	Foot (ft)	$1 \mathrm{ft}=0.3048 \mathrm{~m}$
Time $\{T\}$	Second (s)	Second (s)	$1 \mathrm{~s}=1 \mathrm{~s}$
Temperature $\{\Theta\}$	Kelvin (K)	Rankine $\left({ }^{\circ} \mathrm{R}\right)$	$1 \mathrm{~K}=1.8^{\circ} \mathrm{R}$

Weight and Mass

- Weight (W) is a force due to the gravity applied to a body,

$$
W=m \cdot \mathrm{~g}
$$

where, m is the mass of the body and g is the gravitational acceleration:
0 SI unit system: $\mathrm{g}=9.807 \mathrm{~m} / \mathrm{s}^{2}$
O BG unit system: $\mathrm{g}=32.174 \mathrm{ft} / \mathrm{s}^{2}$

- Examples: If the mass of an apple is 102 g ,
o $1 \mathrm{~N}=1$ apple
o 1 lbf $=4$ apples

Measures of Fluid Mass and Weight

- Density (mass per unit volume)

$$
\rho=\frac{m}{\forall} \quad\left(\mathrm{~kg} / \mathrm{m}^{3} \text { or slugs } / \mathrm{ft}^{3}\right)
$$

- Specific Weight (weight per unit volume)

$$
\gamma=\frac{W}{V}=\frac{m \mathrm{~g}}{W}=\rho \mathrm{g} \quad\left(\mathrm{~N} / \mathrm{m}^{3} \text { or } \mathrm{lbf} / \mathrm{ft}^{3}\right)
$$

- Specific Gravity

$$
\mathrm{SG}=\frac{\gamma}{\gamma_{\text {water }}}\left(=\frac{\rho}{\rho_{\text {water }}}\right)
$$

Ex) For mercury, $\mathrm{SG}=13.6$ and $\rho_{\text {mercury }}=\mathrm{SG} \cdot \rho_{\text {water }}=(13.6)(1,000)=13,600 \mathrm{~kg} / \mathrm{m}^{3}$

Viscosity

- Shear stress

$$
\tau \propto \frac{\delta \theta}{\delta t} ; \quad \tan \delta \theta=\frac{\delta u \delta t}{\delta y}
$$

- $\quad \tau$: Shear stress ($\mathrm{N} / \mathrm{m}^{2}$ or $\mathrm{lbf} / \mathrm{ft}^{2}$)
- $\quad \delta \theta$: Shear strain angle

(a)

(b)

$$
\tau=\mu \frac{d u}{d y}
$$

- $\quad \mu$: Dynamic viscosity ($\mathrm{N} \cdot \mathrm{s} / \mathrm{m}^{2}$ or $\mathrm{lbf} \cdot \mathrm{s} / \mathrm{ft}^{2}$)
- $\quad v=\mu / \rho$: Kinematic viscosity ($\mathrm{m}^{2} / \mathrm{s}$ or $\mathrm{ft}^{2} / \mathrm{s}$)
- \quad Shear force $=\tau \cdot A$
- Non-Newtonian fluid

$$
\tau \propto\left(\frac{d u}{d y}\right)^{n}
$$

Vapor Pressure and Cavitation

- Vapor pressure: Below which a liquid evaporates, i.e., changes to a gas. If the pressure drop is due to
o Temperature effect: Boiling
o Fluid velocity: Cavitation

Cavitation formed on a marine propeller

Surface Tension

- Surface tension force: The force developed at the interface of two immiscible fluids (e.g., liquid-gas) due to the unbalanced molecular cohesive forces at the fluid surface.

Attractive forces acting on a liquid molecule at the surface and deep inside the liquid

$$
F_{\sigma}=\sigma \cdot L
$$

- $\quad F_{\sigma}=$ Line force with direction normal to the cut
- $\quad \sigma=$ Surface tension $[\mathrm{N} / \mathrm{m}]$, the intensity of the molecular attraction per unit length
- $\quad L=$ Length of cut through the interface

Capillary Effect

- Capillary Effect: The rise (or fall) of a liquid in a smalldiameter tube inserted into a the liquid.
- Capillary rise:

$$
F_{\sigma, \text { vertical }}=W
$$

or

$$
\begin{gathered}
\sigma \cdot(2 \pi R) \cos \phi=\rho \mathrm{g}\left(\pi R^{2} h\right) \\
\therefore h=\frac{2 \sigma}{\rho \mathrm{~g} R} \cos \phi
\end{gathered}
$$

The forces acting on a liquid column that has risen in a tube due to the capillary effect

Note: $\phi=$ contact angle

Equations of Fluid Motions

- Newton's $2^{\text {nd }}$ law (per unit volume):

$$
\rho \underline{a}=\sum \underline{f}
$$

$$
\text { where, } \sum \underline{f}=\underline{f}_{\text {body }}+\underline{f}_{\text {surface }} \text { and } \underline{f}_{\text {surface }}=\underline{f}_{\text {pressure }}+\underline{\mathrm{f}}_{\text {shear }}
$$

- Viscous fluids flow (Navier-Stokes equation):

$$
\rho \underline{a}=-\rho \mathrm{g} \widehat{\boldsymbol{k}}-\nabla p+\mu \nabla^{2} \underline{V}
$$

- Inviscid fluids flow ($\mu=0$; Euler equation):

$$
\rho \underline{a}=-\rho \mathrm{g} \widehat{\boldsymbol{k}}-\nabla p
$$

- Fluids at rest (No motion, i.e., $\underline{a}=0$):

$$
\nabla p=-\rho \mathrm{g} \widehat{\boldsymbol{k}}
$$

Absolute Pressure, Gage Pressure, and Vacuum

- Absolute pressure: The actual pressure measured relative to absolute vacuum
- Gage pressure: Pressure measured relative to local atmospheric pressure
- Vacuum pressure: Pressures below atmospheric pressure

Figure 2.7
© John Wiley \& Sons, Inc. All rights reserved.

Pressure Variation with Elevation

For fluids at rest,

$$
\frac{\partial p}{\partial x}=\frac{\partial p}{\partial y}=0
$$

and

$$
\frac{\partial p}{\partial z}=-\gamma
$$

For constant γ (e.g., liquids), by integrating the above equations,

$$
p=-\gamma z+C
$$

At $z=0, p=C=0$ (gage),

$$
\therefore p=-\gamma z
$$

\Rightarrow The pressure increases linearly with depth.

Pressure Measurements

(1) U-Tube manometer

- Starting from one end, add pressure
 when move downward and subtract when move upward:

$$
p_{A}+\gamma_{1} h_{1}-\gamma_{2} h_{2}=0
$$

Thus,

$$
\therefore p_{A}=\gamma_{2} h_{2}-\gamma_{1} h_{1}
$$

- If $\gamma_{1} \ll \gamma_{2}$ (e.g., γ_{1} is a gas and γ_{2} a liquid),

$$
p_{A}=\gamma_{2}\left(h_{2}-\frac{\gamma_{1}}{\gamma_{2}} h_{1}\right)
$$

$$
\therefore p_{A} \approx \gamma_{2} h_{2}
$$

Pressure Measurements (2) Differential manometer

- To measure the difference in pressure:

$$
p_{A}+\gamma_{1} h_{1}-\gamma_{2} h_{2}-\gamma_{3} h_{3}=p_{B}
$$

$\therefore \Delta p=p_{A}-p_{B}=\gamma_{2} h_{2}+\gamma_{3} h_{3}-\gamma_{1} h_{1}$

Hydrostatic Forces: (1) Horizontal surfaces

- Pressure is uniform on horizontal surfaces (e.g., the tank bottom) as

$$
p=\gamma h
$$

- The magnitude of the resultant force is simply

$$
F_{R}=p A=\gamma h A(=\gamma \nvdash)
$$

Hydrostatic Forces: (2) Inclined surfaces

- Average pressure on the surface

$$
\bar{p}=p_{C}=\gamma h_{c}
$$

- The magnitude of the resultant force is simply

$$
F_{R}=\bar{p} A=\gamma h_{c} A
$$

- Pressure center

$$
y_{R}=y_{c}+\frac{I_{x c}}{y_{c} A}
$$

Hydrostatic Forces: (3) Curved surfaces

$$
\begin{gathered}
F_{x}=\bar{p}_{\text {proj }} \cdot A_{\text {proj }} \\
F_{y}=\gamma \forall_{\text {above } A B} \\
W=\gamma \forall_{A B C}
\end{gathered}
$$

- Horizontal force component: $F_{H}=F_{x}$
- Vertical force component: $F_{V}=F_{y}+W=\gamma V_{\text {total volume above } A C}$
- Resultant force: $F_{R}=\sqrt{F_{H}^{2}+F_{V}^{2}}$

Buoyancy: (1) Immersed bodies

$$
F_{B}=F_{V 2}-F_{V 1}=\gamma V
$$

- Fluid weight equivalent to body volume \forall
- Line of action (or the center of buoyancy) is through the centroid of \forall, c

Buoyancy: (2) Floating bodies

$F_{B}=\gamma ظ_{\text {displaced volume }}$ (i.e., the weight of displaced water)
Line of action (or the center of buoyancy) is through the centroid of the displaced volume

Stability: (1) Immersed bodies

- If c is above G: Stable (righting moment when heeled)
- If c is below G : Unstable (heeling moment when heeled)

Stability: (2) Floating bodies

- $G M>0$: Stable (M is above G)
- $G M<0$: Unstable (G is above M)

$$
G M=\frac{I_{00}}{V}-C G
$$

Rigid-body motion: (1) Translation

- Fluid at rest

$$
\begin{array}{ll}
\text { ㅇ } & \frac{\partial p}{\partial z}=-\rho \mathrm{g} \\
\text { ० } & p=\rho \mathrm{g} z
\end{array}
$$

- Rigid-body in translation with a constant acceleration,

$$
\underline{a}=a_{x} \hat{\imath}+a_{z} \widehat{\boldsymbol{k}}
$$

$$
\begin{aligned}
& \text { o } \frac{\partial p}{\partial s}=-\rho \mathrm{G} \\
& \text { o } p=\rho \mathrm{G} s \\
& \mathrm{G}=\left(a_{x}^{2}+\left(\mathrm{g}+a_{z}\right)^{2}\right)^{\frac{1}{2}} \\
& \theta=\tan ^{-1} \frac{a_{x}}{\mathrm{~g}+a_{z}}
\end{aligned}
$$

Rigid-body motion: (2) Rotation

- Rigid-body in translation with

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

a constant rotational speed Ω,

$$
\begin{aligned}
& \quad \underline{a}=-r \Omega^{2} \hat{\boldsymbol{e}}_{r} \\
& \text { ० } \frac{\partial p}{\partial r}=\rho r \Omega^{2} \text { and } \frac{\partial p}{\partial z}=-\rho \mathrm{g} \\
& \text { ० } \quad p=\frac{\rho}{2} r^{2} \Omega^{2}-\rho \mathrm{g} z+C \\
& \text { ○ } \quad z=\frac{p_{0}-p}{\rho \mathrm{~g}}+\frac{\Omega^{2}}{2 \mathrm{~g}} r^{2}
\end{aligned}
$$

Flow Patterns

- Pathline: The actual path traveled by a given fluid particle.
- Streamline: A line that is everywhere tangent to the velocity vector at a given instant.
- Streakline: The locus of particles which have earlier passed through a particular point.
- For steady flow, all three lines coincide.

Streamline

Streakline

Streamline coordinates

- Velocity

$$
\begin{gathered}
\underline{V}=v_{s} \widehat{\boldsymbol{s}}+v_{n} \widehat{\boldsymbol{n}} \\
v_{s}=V \\
v_{n}=0
\end{gathered}
$$

where

- Acceleration in streamline coordinates:

$$
\underline{a}=a_{s} \widehat{\boldsymbol{s}}+a_{n} \widehat{\boldsymbol{n}}
$$

where,
$0 \quad a_{s}=\frac{\partial v_{s}}{\partial t}+v_{s} \frac{\partial v_{s}}{\partial s}$

- $\quad a_{n}=\frac{\partial v_{n}}{\partial t}+\frac{v_{s}^{2}}{\Re}$
- Euler equation in the streamline coordinates

$$
\rho \underline{a}=-\nabla(p+\gamma z)
$$

or

$$
\begin{gathered}
\rho\left(\frac{\partial v_{s}}{\partial t}+v_{s} \frac{\partial v_{s}}{\partial s}\right)=-\frac{\partial}{\partial s}(p+\gamma z) \\
\rho\left(\frac{\partial v_{n}}{\partial t}+\frac{v_{s}^{2}}{\Re}\right)=-\frac{\partial}{\partial n}(p+\gamma z)
\end{gathered}
$$

Note:

$$
\rho \mathrm{g} \widehat{\boldsymbol{k}}=\frac{\partial(\gamma z)}{\partial z} \widehat{\boldsymbol{k}}=\nabla(\gamma z)
$$

Bernoulli Equation

Integration of the Euler equation for a steady incompressible flow:

- Along a streamline:

$$
p+\frac{1}{2} \rho V^{2}+\gamma z=\text { Constant }
$$

- Across the streamline:

$$
p+\rho \int \frac{V^{2}}{\Re} d n+\gamma z=\text { Constant }
$$

Alternative Forms and Restrictions of Bernoulli equation

- Static, stagnation dynamic, and Total pressure

$$
\underbrace{p}_{\underbrace{\text { pressure }}_{\text {stagnation pressure }}}+\underbrace{\frac{1}{2} \rho V^{2}}_{\begin{array}{c}
\text { dynamic } \\
\text { pressure }
\end{array}}+\underbrace{\gamma Z}_{\begin{array}{c}
\text { hydrostatic } \\
\text { pressure }
\end{array}}=p_{T}=\text { constant }
$$

Since $V_{2}=0$ and $z_{1}=z_{2}$,

$$
\begin{gathered}
p_{1}+\frac{1}{2} \rho V_{1}^{2}+0=p_{2}+0+0 \\
\therefore p_{2}=p_{1}+\frac{1}{2} \rho V_{1}^{2}
\end{gathered}
$$

Alternative Forms and Restrictions of Bernoulli equation - Contd.

- Head form

$$
\therefore \underbrace{\frac{p}{\gamma}}_{\begin{array}{c}
\text { pressure } \\
\text { head }
\end{array}}+\underbrace{\frac{V^{2}}{2 g}}_{\begin{array}{c}
\text { velocity } \\
\text { head }
\end{array}}+\underbrace{z}_{\begin{array}{c}
\text { elevation } \\
\text { head }
\end{array}}=\text { constant }
$$

- Restrictions

1) Inviscid flow (i.e., no friction)
2) Incompressible flow (i.e., $\rho=$ constant)
3) Steady flow

Pressure Variation in a Flowing Stream

Bernoulli equation across the streamline:

$$
p+\int \rho \frac{V^{2}}{\mathfrak{R}} d n+\gamma Z=\text { Constant }
$$

- From A to $\mathrm{B}, \mathfrak{R}=\infty$

$$
\begin{gathered}
p_{1}=p, 2+\int \rho \frac{V^{2}}{\Re} d n+\gamma\left(z_{2}-z_{1}\right) \\
\therefore p_{1}=\gamma h_{2-1}
\end{gathered}
$$

- Let $d n=-d z$ for the portion from C to D

$$
\begin{gathered}
p_{4}+\rho \int_{z_{3}}^{z_{4}} \frac{V^{2}}{\Re}(-d z)+z_{4}=p_{3}+\gamma z_{3} \\
\therefore p_{3}=\gamma h_{4-3}-\underbrace{\rho \int_{z_{3}}^{z_{4}} \frac{V^{2}}{\Re} d z}_{>0}
\end{gathered}
$$

- For the portion from A to B, where the flow is parallel, the pressure variation in the vertical direction is the same as if the fluid were stationary.
- For the portion from C to D, the pressure at (3) is less than the hydrostatic value, γh_{4-3}, due to the curved streamline.

Application of Bernoulli equation (1) Stagnation tube

$$
p_{1}+\rho \frac{V_{1}^{2}}{2}+\gamma z_{1}=p_{2}+\rho \frac{V_{2}^{2}}{2}+\gamma z_{2}
$$

Since $V_{2}=0$ (stagnation point) and $z_{1}=z_{2}$,

$$
p_{1}+\rho \frac{V_{1}^{2}}{2}=p_{2}
$$

Solve for V_{1} :

$$
V_{1}=\sqrt{\frac{2\left(p_{2}-p_{1}\right)}{\rho}}
$$

Also, $p_{1}=\gamma d$ and $p_{2}=\gamma(d+\ell)$

$$
\therefore V_{1}=\sqrt{2 \mathrm{~g} \ell}
$$

Application of Bernoulli equation (2) Pitot tube

$$
p_{1}+\rho \frac{V_{1}^{2}}{2}+\gamma z_{1}=p_{2}+\rho \frac{V_{2}^{2}}{2}+\gamma z_{2}
$$

where $V_{1}=0$ (stagnation point),

$$
p_{1}+\gamma z_{1}=p_{2}+\rho \frac{V_{2}^{2}}{2}+\gamma z_{2}
$$

Solve for V_{2} :

$$
V_{2}=\sqrt{2 g[\underbrace{\left(\frac{p_{1}}{\gamma}+z_{1}\right)}_{=h_{1}}-\underbrace{\left(\frac{p_{2}}{\gamma}+z_{2}\right)}_{=h_{2}}]}
$$

Thus,

$$
\therefore V=V_{2}=\sqrt{2 \mathrm{~g} \cdot \underbrace{\left(h_{1}-h_{2}\right)}_{\text {from manometer }}}
$$

Application of Bernoulli equation (3) Free jets

Applying the B.E. between (1) and (2),

$$
p_{1}+\rho \frac{V_{1}^{2}}{2}+\gamma z_{1}=p_{2}+\rho \frac{V_{2}^{2}}{2}+\gamma z_{2}
$$

Since $p_{1}=p_{2}=0$ and $V_{1} \approx 0$, and $z_{1}-z_{2}=h$,

$$
\gamma h=\rho \frac{V_{2}^{2}}{2}
$$

Solve for V_{2} :

$$
V_{2}=\sqrt{2 \frac{\gamma h}{\rho}}=\sqrt{2 g h}
$$

Application of Bernoulli equation (4) Venturimeter

Bernoulli eq. with $z_{1}=z_{2}$,

$$
p_{1}+\rho \frac{V_{1}^{2}}{2}=p_{2}+\rho \frac{V_{2}^{2}}{2}
$$

Continuity eq.,

$$
V_{1}=\frac{A_{2}}{A_{1}} V_{2}=\left(\frac{D_{2}}{D_{1}}\right)^{2} V_{2}
$$

Thus,

$$
p_{1}+\frac{1}{2} \rho\left(\left(\frac{D_{2}}{D_{1}}\right)^{2} V_{2}\right)^{2}=p_{2}+\rho \frac{V_{2}^{2}}{2}
$$

Solve for V_{2},

$$
V_{2}=\sqrt{\frac{2\left(p_{1}-p_{2}\right)}{\rho\left[1-\left(D_{2} / D_{1}\right)^{4}\right]}}
$$

Then,

$$
Q=V_{2} A_{2}
$$

Flow Kinematics: (1) Lagrangian Description

- Keep track of individual fluid particles

$$
\begin{gathered}
\underline{V_{p}}(t)=\frac{d \underline{x}}{d t}=u_{p}(t) \hat{\boldsymbol{\imath}}+v_{p}(t) \hat{\boldsymbol{\jmath}}+w_{p}(t) \widehat{\boldsymbol{k}} \\
u_{p}=\frac{d x}{d t}, v_{p}=\frac{d y}{d t}, w_{p}=\frac{d z}{d t} \\
a_{p}=\frac{d V_{p}}{d t}=a_{x} \hat{\imath}+a_{y} \hat{\jmath}+a_{z} \hat{k} \\
a_{x}=\frac{d u_{p}}{d t}, a_{y}=\frac{d v_{p}}{d t}, a_{z}=\frac{d w_{p}}{d t}
\end{gathered}
$$

Flow Kinematics: (2) Eulerian Description

- Focus attention on a fixed point in space

$$
\begin{gathered}
\underline{V}(\underline{x}, t)=u(\underline{x}, t) \hat{\boldsymbol{\imath}}+v(\underline{x}, t) \hat{\boldsymbol{\jmath}}+w(\underline{x}, t) \widehat{\boldsymbol{k}} \\
\underline{a}=\frac{D \underline{V}}{D t}=a_{x} \hat{\imath}+a_{y} \hat{\jmath}+a_{z} \hat{k}
\end{gathered}
$$

Or,

$$
\begin{aligned}
& a_{x}=\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z} \\
& a_{y}=\frac{\partial v}{\partial t}+u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+w \frac{\partial v}{\partial z} \\
& a_{z}=\frac{\partial w}{\partial t}+u \frac{\partial w}{\partial x}+v \frac{\partial w}{\partial y}+w \frac{\partial w}{\partial z}
\end{aligned}
$$

Acceleration and material derivatives -Contd.

- Acceleration

$$
\underline{a}=\frac{D \underline{V}}{D t}=\underbrace{\frac{\partial \underline{V}}{\partial t}}_{\begin{array}{c}
\text { Local } \\
\text { acc. }
\end{array}}+\underbrace{(\underline{V} \cdot \nabla) \underline{V}}_{\begin{array}{c}
\text { Convective } \\
\text { acc. }
\end{array}}
$$

$\mathrm{o} \frac{\partial \underline{V}}{\partial t}=$ Local or temporal acceleration. Velocity changes with respect to time at a given point
o $(\underline{V} \cdot \nabla) \underline{V}=$ Convective acceleration. Spatial gradients of velocity

- Material derivative:

$$
\frac{D}{D t}=\frac{\partial}{\partial t}+(\underline{V} \cdot \nabla)
$$

where

$$
\nabla=\frac{\partial}{\partial x} \hat{\imath}+\frac{\partial}{\partial y} \hat{\jmath}+\frac{\partial}{\partial z} \hat{k}
$$

4. Flow classification

- One-, Two-, and Three-dimensional flow
- Steady vs. Unsteady flow
- Incompressible vs. Compressible flow
- Viscous vs. Inviscid flow
- Rotational vs. Irrotational flow
- Laminar vs. Turbulent viscous flow
- Internal vs. External flow
- Separated vs. Unseparated flow

Reynolds Transport Theorem (RTT)

General RTT (for moving and deforming CV):

$$
\frac{d B_{\mathrm{sys}}}{d t}=\frac{d}{d t}\left(\int_{\mathrm{CV}} \beta \rho d V\right)+\int_{\mathrm{CS}} \beta \rho \underline{V}_{r} \cdot \hat{\boldsymbol{n}} d A
$$

Special Cases:

1) Non-deforming (but moving) CV

$$
\frac{d B_{\text {sys }}}{d t}=\int_{\mathrm{CV}} \frac{\partial}{\partial t}(\beta \rho) d \forall+\int_{\mathrm{CS}} \beta \rho \underline{V_{r}} \cdot \widehat{\boldsymbol{n}} d A
$$

2) Fixed CV

$$
\frac{d B_{\mathrm{sys}}}{d t}=\int_{\mathrm{CV}} \frac{\partial}{\partial t}(\beta \rho) d \forall+\int_{\mathrm{CS}} \beta \rho \underline{V} \cdot \widehat{\boldsymbol{n}} d A
$$

3) Steady flow:

$$
\frac{\partial}{\partial t}=0
$$

4) Flux terms for uniform flow across discrete CS's (steady or unsteady)

$$
\int_{\mathrm{CS}} \beta \rho \frac{V}{57: 020} \cdot \widehat{\boldsymbol{n}} d A=\sum_{\text {Fluids Mectanics Fall2013 }}(\beta \dot{m})_{\text {out }}-\sum(\beta \dot{m})_{\text {in }}
$$

RTT Summary

For fixed CV's:

Parameter (B)	$\beta=B / m$	RTT	Remark
Mass (m)	1	$0=\frac{d}{d t} \int_{\mathrm{CV}} \rho d \underline{V}+\int_{\mathrm{CS}} \rho \underline{V} \cdot \widehat{\boldsymbol{n}} d A$	Continuity eq. (Ch. 5.1)
Momentum $(m \underline{V})$	\underline{V}	$\sum \underline{F}=\frac{d}{d t} \int_{\mathrm{CV}} \underline{V} \rho d V+\int_{\mathrm{CS}} \underline{V} \rho \underline{V} \cdot \widehat{\mathbf{n}} d A$	Linear momentum eq. (Ch. 5.2)
Energy (E)	e	$\dot{Q}-\dot{W}=\frac{d}{d t} \int_{\mathrm{CV}} e \rho d \underline{ }+\int_{\mathrm{CS}} e \rho \underline{V} \cdot \widehat{\boldsymbol{n}} d A$	Energy eq. (Ch. 5.3)

Continuity Equation

RTT with $B=$ mass and $\beta=1$,

$$
\underbrace{0=\frac{D m_{\text {sys }}}{D t}}_{\text {nass conservatoin }}=\frac{d}{d t} \int_{\mathrm{CV}} \rho d V+\int_{\mathrm{CS}} \rho \underline{V} \cdot \widehat{\boldsymbol{n}} d A
$$

or

$$
\underbrace{\int_{\mathrm{CS}} \rho \underline{V} \cdot \widehat{\boldsymbol{n}} d A}_{\begin{array}{c}
\text { Net rate of outflow } \\
\text { of mass across } \mathrm{CS}
\end{array}}=\underbrace{-\frac{d}{d t} \int_{\mathrm{CV}} \rho d V}_{\begin{array}{c}
\text { Rate of decrease of } \\
\text { mass within } \mathrm{CV}
\end{array}}
$$

Note: Incompressible fluid ($\rho=$ constant)

$$
\int_{\mathrm{CS}} \underline{V} \cdot \widehat{\boldsymbol{n}} d A=-\frac{d}{d t} \int_{\mathrm{CV}} d V \quad \text { (Conservation of volume) }
$$

Simplifications

1. Steady flow

$$
\int_{\mathrm{CS}} \rho \underline{V} \cdot \widehat{\boldsymbol{n}} d A=0
$$

2. If $\underline{V}=$ constant over discrete CS's (i.e., one-dimensional flow)

$$
\int_{\mathrm{CS}} \rho \underline{V} \cdot \widehat{\boldsymbol{n}} d A=\sum_{\text {out }} \rho V A-\sum_{\text {in }} \rho V A
$$

3. Steady one-dimensional flow in a conduit

$$
(\rho V A)_{\text {out }}-(\rho V A)_{\text {in }}=0
$$

or

$$
\rho_{2} V_{2} A_{2}-\rho_{1} V_{1} A_{1}=0
$$

For $\rho=$ constant

$$
V_{1} A_{1}=V_{2} A_{2} \quad\left(\text { or } Q_{1}=Q_{2}\right)
$$

