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Definition of Fluid

Fluid: Deforms continuously (i.e., flows) when subjected to a
shearing stress

— Solid: Resists to shearing stress by a static deflection

No-slip condition: No relative
motion between fluid and solid
boundary at the contact

— The fluid “sticks” to the solid

boundaries
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X
Fixed plate

The fluid in contact with the lower
plate is stationary, whereas the fluid
in contact with the upper moving

plate moves at speed V. 5



Dimensions and Units

Primary dimensions (or fundamental dimensions): Mass {M}, Length {L}, Time {T},
and Temperature {©}.

Secondary dimensions (or derived dimensions): All other dimensions expressed in
terms of {M}, {L}, {T}, and {®)}. For example,

Force = Mass x Acceleration, {F} = {M-L/T?}
Sl units (The International System) : The basic units are kilogram (kg), meter (m),
and second (s). The force unit is the newton (N),
1N=1kg-1m/s?
BG units (The British Gravitational System): The basic units are slugs (slug), foot
(ft), and second (s). The force unit is the pound-force (lbf),

1 Ibf =1 slug -1 ft/s?

Primary dimension SI unit BG unit Conversion factor

Mass {M} Kilogram (kg) Slug 1 slug = 14.5939 kg
Length {L} Meter (m) Foot (ft) 1ft = 0.3048 m
Time {T} Second (s) Second (s) ls=1s
Temperature {©}] Kelvin (K) Rankine ("R) 1 K=18R
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Weight and Mass

e Weight (W) is a force due to the gravity applied to a body,
W=m-g

where, m is the mass of the body and g is the gravitational acceleration:
O Sl unit system: g = 9.807 m/s?
O BG unit system: g =32.174 ft/s?

4 apples
m=11bm

| apple = (1/32.2 slugsy
e Examples: If the mass of an apple is 102 g, "ot { 2
0 1N=1apple Y

0 1lbf=4apples

Note: Pound-mass (lbm)
1 lbm =0.45359 kg
1slug=32.2lbm




Measures of Fluid Mass and Weight

e Density (mass per unit volume)

p = % (kg/m?3 or slugs/ft3)

e Specific Weight (weight per unit volume)
w mg

_ W _mg _ 3 3
V=3 =" =P8 (N/m?3 or Ibf/ft3)

e Specific Gravity

ot (52
Vwater pwater

Ex) For mercury, SG = 13.6 and ppercury = SG * pwater = (13.6)(1,000) = 13,600 kg/m3



Shear stress

00
o 2.
' St

- T: Shear stress (N/m? or |bf/ft?)

tan 60 =

- 00: Shear strain angle

Newtonian fluid

- Shearforce=71-4

Non-Newtonian fluid

T X

Viscosity

du
T = M@

- u: Dynamic viscosity (N-s/m? or |bf-s/ft?)

- v = u/p: Kinematic viscosity (m?/s or ft?/s)

du
dy

)n

oudt
oy
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u(y)

Velocity
profile

dy

Shearing stress, 7

du

L{l\' ”:“T:'u%

No slip at wall

(h)

Bingham plastic

Shear thinning —,

Newtonian

=—— Shear thickening

. . du
Rate of shearing strain, dy



Vapor Pressure and Cavitation

e Vapor pressure: Below which a liquid evaporates, i.e., changes
to a gas. If the pressure drop is due to
O Temperature effect: Boiling
O Fluid velocity: Cavitation

Cavitation formed on a marine propeller
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Surface Tension

Surface tension force: The force
developed at the interface of two
immiscible fluids (e.g., liquid-gas) due to
the unbalanced molecular cohesive
forces at the fluid surface.

E; = Line force with direction normal to the cut
o = Surface tension [N/m], the intensity of the
molecular attraction per unit length

L = Length of cut through the interface

— A molecule
inside the
liquid

- A molecule
\: on the surface

Attractive forces acting on a
liguid molecule at the surface
and deep inside the liquid

cdL

odL
cdL



Capillary Effect

e Capillary Effect: The rise (or fall) of a liquid in a small-
diameter tube inserted into a the liquid.

e Capillary rise: \ d/(‘rf{

Fa,vertical =W | S
or A 1 A
o - (2mR) cos ¢ = pg(mR?*h) Liquid : d
IR
20
. h = — COS ¢ The forces acting on a liquid column that has
pgR risen in a tube due to the capillary effect

Note: ¢ = contact angle



Equations of Fluid Motions

Newton’s 2" law (per unit volume):

pg=2£

where, X f = fpody + fsurface and fsurface = fpressure + fshear
Viscous fluids flow (Navier-Stokes equation):
pa = —pgk — Vp + uv?y
Inviscid fluids flow (u = 0; Euler equation):
pa = —pgk — Vp

Fluids at rest (No motion, i.e.,a = 0):

—~

Vp = —pgk



Absolute Pressure, Gage Pressure, and
Vacuum

Absolute pressure: The actual pressure measured relative to absolute vacuum
Gage pressure: Pressure measured relative to local atmospheric pressure
Vacuum pressure: Pressures below atmospheric pressure

A

1
A 8 A

Gage pressure @ 1

Local atmospheric

(<]

5 pressure reference

(%]

4 2

o 9 Gage pressure @ 2
Absolute pressure ) (suction or vacuum)

@ 1
Absolute pressure
@?2

Absolute zero reference

Figure 2.7
© John Wiley & Sons, Inc. All rights reserved.



Pressure Variation with Elevation

For fluids at rest,

dp Op
—_—— = O
dx Jdy
and Z
op gl T
0z 4 AV
For constant y (e.g., liquids), by integrating the above
equations, P=—-YZ
p=-yz+C

Atz=0,p = C =0 (gage),
2 4

= The pressure increases linearly with depth.



Pressure Measurements
(1) U-Tube manometer

e Starting from one end, add pressure
Open when move downward and subtract

when move upward:
bii
1\ _T pat+yihi —v2hy =0
A+ S i s Thus,
fi i S Pa =VY2hy — vy
o R (2) e (3)
(ggzge\ . If yl_ K Y, (e.g.,yrisagasandy, a
fluid) liquid),
k J yl
= 4 PA:V2<h2—_h1
g - V2

S Pa = Yahy



Pressure Measurements
(2) Differential manometer

e To measure the difference in
pressure:

pPa +vihy —y2hy —y3hs = pp

“Ap =py —pg =y2hy +yshs —yihy
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Hydrostatic Forces: (1) Horizontal surfaces

v e * Pressure is uniform on horizontal
"_.'...'..-_-ll.". o ' ' e e e e o P Ky '_- -" e Tt Su rfa Ces (e_g-’ the tank bottom)

Specific weight =y as

Fp / p=vh

e R

p =vh

AV & Fr = pA =vhA (=y¥)
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Hydrostatic Forces: (2) Inclined surfaces

Center of

ressure )
kL Centroid

of area

e Average pressure on the surface

p =pc = Yh,

 The magnitude of the resultant
force is simply

Fr =pA=yhA

e Pressure center
IXC

VeA

YR =Yc T



Hydrostatic Forces: (3) Curved surfaces

LU

Horizontal projection
/ of the curved surface
W s B

F, = ﬁproj . Aproj

E y = YVabove 4B
W = y¥pc

I Vertical projection
| of the curved surface

Curved

surface

Free-body diagram
of the enclosed
liquid block

I
I
I
)

Cc

* Horizontal force component: Fy = F,

e Vertical force component: Fy, = E, + W = y¥otal volume above Ac

* Resultant force: Fg = /FE, + F7?

Review for Exam 1 2016 17



Buoyancy: (1) Immersed bodies

~ F, (1)

Surface — — —
- Fg = Fy, — Fyy =y¥

e Fluid weight equivalent to body
volume ¥

e Line of action (or the center of
buoyancy) is through the

Surface centroid of ¥, ¢

2

Fy(2)
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Buoyancy: (2) Floating bodies

Neglect the displaced air up here.

(Displaced volume) > ( v of fluid) = body weight

Fg = y¥iisplaced volume (i-€., the weight of displaced water)

Line of action (or the center of buoyancy) is through the centroid of
the displaced volume
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Stability: (1) Immersed bodies

AV AV
S ®
b (7 '0
Restoring Overturning

couple couple
Stable up Unstable P

If ¢ is above G: Stable (righting moment when heeled)
If ¢ is below G: Unstable (heeling moment when heeled)
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Stability: (2) Floating bodies

Small Small

Line of disturbance

\Af,
o

Symmelry

Either Restoring moment or Overturning moment

] () )

e GM > 0:Stable (M is above G)
e GM < 0: Unstable (G is above M)

Ioo
GM =——CG
174
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Rigid-body motion: (1) Translation

Fluid

at rest

e Fluid at rest

ap__
0O 5, = P8

O p=pgz

e Rigid-body in translation with
a constant acceleration,

o~

a=a,l+a,k

6p__
O E— pG

O p=pGs

1
G=(az+ (g+a,)?)2

a
0 = tan ! —=

gt+a,



Rigid-body motion: (2) Rotation

e Rigid-body in translation with
a constant rotational speed (3,

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

z, k 2 A
a = —r(l“e,
op 2 dp
0O —=prQ“and — = —
or p 0z Ps
__ Still-water
level
0 ngrzﬂz —pgz+ C
Axis of __—y
rotation | N \ Do—D QZ 2
\ 0O z= e + 28 r

Review for Exam 1 2016 23



Flow Patterns

e Pathline: The actual path traveled by a given fluid particle.

e Streamline: A line that is everywhere tangent to the velocity vector
at a given instant.

e Streakline: The locus of particles which have earlier passed through
a particular point.

* For steady flow, all three lines coincide.

l Dye or smoke

Fluid particle at r =t i lnjccluf] Muid particle

| Streakline

[ ]
"ﬁ
oy
. ¢
1 2
1 =
=
¢ F
M
.
L
*
i
L
LY
— [§%)
X
)
\|

IllT_.LIII |]L|+JI Ll Ll
[,

Fluid particle at some
intermediate time -1

Pathline Streamline Streakline
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Streamline coordinates

R = R(s)

n n=0
V
5 h

i Streamlines

n= 111

e Acceleration in streamline
coordinates:
a=assS+a,n

where,
0O as= % + Vg %
o a, = aaL: +v§f2
Note:
pgk = 209 & v

0z

e Velocity
V=v85+v,n
where
v =V
v, =

e Euler equation in the streamline coordinates

pa=—-V(p+vyz)
or
0vg

0vg dvg __i
’O(E-I_US 65)_ as(p+yz)

ovn , v§\ _ _ 0
p(Get+%)= 5@ +72)
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Bernoulli Equation

Integration of the Euler equation for a
steady incompressible flow:

Along a streamline:

1
p + E,DVZ + yz = Constant

Across the streamline:

VZ
p+p adn + yz = Constant

Z

1
2
= constant

p+

V2

p+pjﬁdn+ Z

= constant

e

pV2 + 7z




Alternative Forms and Restrictions of
Bernoulli equation

e Static, stagnation dynamic, and Total pressure

1
p + EpVZ + yz = p; = constant
o e
static d‘_/' hydrostatic
pressure plyerlsaérll;:‘g pressure

stagnation pressure

SinceV, = 0and z; = z,,
Dividing

streamline 1
72=0 pr+spVP+0=p,+0+0
v, pr=" )
- = = » X
i Stagnation/ 1
point w P2 =p1t+5pVd

2



Alternative Forms and Restrictions of
Bernoulli equation — Contd.

i H ea d fO rm Energy grade lincv 7
2 V2
p V V2 Hydraulic grade line % MRS
- 4+ — + Z = constant % /
14 29 - |
“ < elevation ‘/_/ !
pressure  yelocity head &
head head B /:
AL =
2 Constant
H Bernoulli

~

* Restrictions Arbitrary daturm (z = 0)
1) Inviscid flow (i.e., no friction)
2) Incompressible flow (i.e., p = constant)
3) Steady flow
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Pressure Variation in a Flowing Stream

Bernoulli equation across the streamline:

p + j —dn + yz = Constant

e FromAtoB,R=w

V2
=//+jp dn +vy(z; — z;)

“pr=vhyy

e lLetdn = —dz for the portion from Cto D

/+pj —(—dz) +z4, = p3 + yZz3
Z3

Z4_V2

S Py =Vhy_ —pj —dz
3 4-3 24 ER
>0

—

(4) /
g Free surface % //
wlr (=0 m
(2) 3 /

2y Al

| T \ /

I hoy |
il B o9 £ | &

e %

A B X

* For the portion from A to B, where the
flow is parallel, the pressure variation
in the vertical direction is the same as
if the fluid were stationary.

* For the portion from Cto D, the
pressure at (3) is less than the
hydrostatic value, yh,_3, due to the
curved streamline.
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Application of Bernoulli equation
(1) Stagnation tube

Vi Vs
p1+P7+VZ1 = D2 +P7+V22

Since I/, = 0 (stagnation point) and z; = z,,

V£
P1 +P7= D2

v, = JZ(pzp— p1)

Solve for V;:

Also, p; =yd andp, = y(d + ¥)

o Vl = 4/ Zg‘f



Application of Bernoulli equation
(2) Pitot tube

43 V7
PLtpotya=ptp vz
Stagnation pressure tap ] N where V; = 0 (stagnation point),
;tic pressure tap V22

pP1tVZ = P2 +P7+VZZ

Solve for V/;:

Thus,

from manometer




Application of Bernoulli equation
(3) Free jets

Applying the B.E. between (1) and (2),

V£ Vi
P1+P7+VZ1 = D2 +P7+V22

Sincep; =p, =0andV; = 0,and z; — z, = h,

Vi

vh=p—
Solve for V,:

’ h
V2= 2)/7=1/2gh




Application of Bernoulli equation

Volume flow rate
Q=VA

Mass flow rate
m = pQ = pVA

Conservation of mass, m; = m,,

p1V1A1 = paVoA;

Incompressible flow (p = const.),

V1A, = V,A,

(4) Venturimeter

Bernoulli eq. with z; = z,,

+ Vi _ + Vi
P1 PZ—PZ PZ

Continuity eq.,

2

AZ DZ
==2v,=(2] Vv
=2 () v

1 {(D,\* 2 V2
2 _ ’2
p1+2p <D1> Vs —pz+p2

Solve for V5,

Vo = 2(pq _Pz)
27 |pl1 = (D2/Dy)4]

Q = V54,

Thus,

Then,



Flow Kinematics: (1) Lagrangian Description

Fluid particle at r = ¢,

-
+* Y
4 o
Pathline ¥
- *
'o" - »?
&R
"-'

\ Fluid particle at r =1y

Fluid particle at some
intermediate time

Keep track of individual fluid particles

(1) = ax _ u, ()i + v, ()] + wy (DK

L dt
dx dy dz
up =E,Up =E,Wp =E
dVp .
@=—7= a,i+ay,j+azk
du dv dw
a, = p 14 a, = p

KA T dt



Flow Kinematics: (2) Eulerian Description

e Focus attention on a fixed point in
space

V(x,t) =ul(xt)i+v(x t)j + w(x, t)ﬁ

DV A A “
Q=D—?=axl+ay]+azk
Or,
u Jdu Ju Ju
Ay =—t+u—+v—+w—
dt dx dy 0z
v v v v
ay = —4+u—+tv—+w—
ot 0x dy 0z
ow ow ow ow
a, ——+u—+v—+w—

dt dx dy 0z



Acceleration and material derivatives —Contd.

Acceleration

DV V
a=—-—=—=+ (V-7")V
B t ““"‘at Co_nvectiv_e

1
L;CCCE_‘ acc.

)4 . . : :
0= Local or temporal acceleration. Velocity changes with respect to time at a

given point
o) (K - V)K = Convective acceleration. Spatial gradients of velocity

Material derivative:

0
=5+ (V-7)

where



4. Flow classification

e One-, Two-, and Three-dimensional flow
e Steady vs. Unsteady flow

* Incompressible vs. Compressible flow

e Viscous vs. Inviscid flow

e Rotational vs. Irrotational flow

e Laminar vs. Turbulent viscous flow

e Internal vs. External flow

e Separated vs. Unseparated flow




Reynolds Transport Theorem (RTT)

General RTT (for moving and deforming CV):

ABsys _ 4 dv | + V. - fidA

Special Cases:

1) Non-deforming (but moving) CV

dBSys 0 R
S jc 5e o+ | pol; -nas
2) Fixed CV
dBSys d R
s jc 5e o+ | pov-nas
3) Steady flow:
d
E =0

4) Flux terms for uniform flow across discrete CS’s (steady or unsteady)

B AdA = ) Bridou = ) (Bridin



For fixed CV’s:

RTT Summary

Parameter (B) | = B/m RTT Remark
d Continuity eq.
Mass (m) 1 0=—| pd¥+ j pV - ndA
dt Joy cs (Ch.5.1)
Momentum v ZF B dj v dV"‘j VoV - dA Linear momentum eq.
(mV) = T R =" (Ch. 5.2)
: : d Energy eq.
Energy (E e —W=— ‘i
gy (E) Q-W=— Cvepd¥ +j epV - fidA (Ch. 5.3)

CS

57:020 Fluids Mechanics Fall2013
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Continuity Equation

RTT with B =massand [ =1,

Dmgys d R
0= Dt = — pd¥+jpz-ndA

, dt Jey cs
mass conservatoin
or
R d
pV -ndd = —— | pd¥
cs dt Jey

Net rate of outflow Rate of decrease of
of mass across CS mass within CV

Note: Incompressible fluid (p = constant)

f V- nad = _Ef av (Conservation of volume)
CS oY



Simplifications

1. Steady flow
j pV -ndA =0
CS

2. If V = constant over discrete CS’s (i.e., one-dimensional flow)

j pzoﬁdA=szA—2pVA
CS :

out 1n

3. Steady one-dimensional flow in a conduit

(pVA)our — (pVA)in =0
or
p2V2A; —p1V141 =0

For p = constant
Vid, =V,4; (or Q1 = Q3)
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