November 19, 2014

1. Kerosene at $20^{\circ} \mathrm{C}\left(\gamma=50.2 \mathrm{lbf} / \mathrm{ft}^{3}\right)$ flows through the pump in Fig. 2 at $2.3 \mathrm{ft}^{3} / \mathrm{s}$. The total head loss between sections 1 and 2 is $h_{L}=8 \mathrm{ft}$ and the mercury manometer reading is $h=4 \mathrm{ft}$. Find (a) the velocities V_{1} and V_{2}, (b) the pressure rise $\Delta p=p_{2}-p_{1}$ across the pump and (c) the power \dot{W}_{p} delivered by the pump. (Note: $1 \mathrm{hp}=550 \mathrm{ft} \cdot \mathrm{lbf} / \mathrm{s}$)

Figure 1
2. Water ($\gamma=62.4 \mathrm{lb} / \mathrm{m}^{3}$ and $\rho=1.94$ slugs $/ \mathrm{ft}^{3}$) flows steadily in a pipe and exits to the atmosphere as a free jet through a nozzle-end that contains a filter as shown in Fig. 1. If the head loss h_{L} for the flow through the nozzle-end is 2.5 ft , determine (a) the pressure at the section (1) and (b) the axial component R_{y} of the anchoring force needed to keep the nozzle stationary. The flow is in a horizontal plane such that the sections (1) and (2) are at the same elevation in the vertical plane and the weight of the nozzle and the water in it does not contribute to the anchoring force.

Figure 2

November 19, 2014

3. A useful approximation for the x component of velocity in a steady incompressible viscous laminar flow between two stationary parallel flat plates in Fig. 3 is

$$
\frac{d^{2} u}{d y^{2}}=-\frac{1}{\mu}\left(\frac{\Delta p}{L}\right)
$$

where, μ is the fluid viscosity and $\Delta p=p_{\text {out }}-p_{\text {in }}$ is the pressure drop along the plate length L. (a) By integrating the given equation then applying appropriate boundary conditions, derive an expression for the velocity distribution $u(y)$. (b) If the fluid is SAE 30 oil at $15.6^{\circ} \mathrm{C}\left(\mu=3.8 \times 10^{-1}\right.$ $\mathrm{N} \cdot \mathrm{s} / \mathrm{m}^{2}$), $h=2.5 \mathrm{~mm}, L=1.5 \mathrm{~m}, W=0.75 \mathrm{~m}, p_{\text {in }}=101.3 \mathrm{kPa}$, and $p_{\text {out }}=0$, estimate the wall shear stress τ_{w} and the shearing force F_{s} acting on the bottom plate.

Figure 3
4. Heat exchangers often consist of many triangular passages. Typical is Fig. 4 with length L and side length b. Under laminar conditions, the volume flow Q through the tube is a function of viscosity μ, pressure drop per unit length Δp_{L}, and b such that $Q=f\left(\mu, \Delta p_{L}, b\right)$. (a) Using the Buckingham pi theorem, find a suitable pi parameter Π for this problem. (b) For one pi parameter the functional relationship must be $\Pi=C$, where C is a constant. Determine by what factor the volume flow will change if the side length b of the tube is doubled.

Figure 4

