October 15, 2014

1. A viscous fluid (specific gravity, $S G=1.26$; kinematic viscosity, $v=1.28 \times 10^{-2} \mathrm{ft}^{2} / \mathrm{s}$) is contained between two large, horizontal parallel plates as shown in Fig. 1. The fluid moves between the plates under the action of a pressure gradient B. When the lower plate is pulled with a velocity V while the upper plate is fixed, the velocity distribution for this flow takes the form

$$
u(y)=\frac{B}{2 \mu}\left(y^{2}-h y\right)+V\left(1-\frac{y}{h}\right)
$$

For $V=0.02 \mathrm{ft} / \mathrm{s}, h=1.0 \mathrm{in}$., $B=-0.334 \mathrm{lb} / \mathrm{ft}^{3}$, and the plate area $A=100 \mathrm{ft}^{2}$, determine (a) the shearing stress τ acting on the moving plate and (b) the required force $F=\tau \cdot A$ and (c) power $P=F \cdot V$ to pull the plate. (Note: $v=\mu / \rho$ and use $\rho_{\text {water }}=1.94$ slugs $/ \mathrm{ft}^{3}$)

Fixed plate

Figure 1
2. The 0.5 -m-radius half-cylinder barrier in Fig. 2 is 8 m long into the paper and rests in static equilibrium against a wall. The contact between cylinder and wall is frictionless. Find (a) the horizontal force (magnitude F_{H} and location $y_{c p}$) and (b) vertical force (magnitude F_{V}) exerted on the curved surface of the barrier and (c) the barrier weight W. You can use geometric properties shown on Figure 3. (Note: $\gamma=9.80 \mathrm{kN} / \mathrm{m}^{3}$)

Figure 2

October 15, 2014

$A=b a$
$I_{x c}=\frac{1}{12} b a^{3}$
$I_{y c}=\frac{1}{12} a b^{3}$

$$
I_{x y c}=0
$$

(a) Rectangle
$A=\frac{\pi R^{2}}{2}$

$I_{x c}=0.1098 R^{4}$
$I_{y c}=0.3927 R^{4}$
$I_{x y c}=0$
(c) Semicircle

$$
\begin{aligned}
& A=\pi R^{2} \\
& I_{x c}=I_{y c}=\frac{\pi R^{4}}{4} \\
& I_{x y c}=0
\end{aligned}
$$

(b) Circle
(d) Triangle

$$
\begin{aligned}
& A=\frac{\pi R^{2}}{4} \\
& I_{x c}=I_{y c}=0.05488 R^{4} \\
& I_{x y c}=-0.01647 R^{4}
\end{aligned}
$$

(e) Quarter circle
© John Wiley \& Sons, Inc. All rights reserved.
Figure 3: Geometric Properties of some common shapes

October 15, 2014

3. Water ($\gamma=62.4 \mathrm{lb} / \mathrm{ft}^{3}$) flows steadily from a large tank as shown in Fig. 4. The deflection in the mercury manometer is 1 in . and viscous effects are negligible. Determine (a) the volume flow rate Q and (b) the water-jet velocity V_{j} leaving the $3-\mathrm{in}$. diameter nozzle exit. (Note: $S G=13.56$ for mercury and $g=32.2 \mathrm{ft} / \mathrm{s}^{2}$)

Figure 4
4. According to potential theory for the flow approaching a rounded two-dimensional body, as in Fig. 5, the velocity approaching the stagnation point is given by $\underline{V}=U\left(1-a^{2} / x^{2}\right) \hat{\boldsymbol{\imath}}$, where a is the nose radius and U is the velocity at far-upstream. If the fluid is SAE 30 oil ($\rho=917 \mathrm{~kg} / \mathrm{m}^{3}$) with $U=2 \mathrm{~m} / \mathrm{s}$ and $a=6 \mathrm{~cm}$, calculate (a) the fluid velocity u, (b) the acceleration a_{x}, and (c) the pressure gradient $d p / d x$ at point 1 (i.e., at $x=-2 a$). For part (c), use the Euler equation, $\rho a_{x}=-d p / d x$.

Figure 5

