EXAM 3 Solutions

Problem 1: Hydrostatic pressure curved surface

Information and assumptions

- $\gamma=62.4 \mathrm{lb} / \mathrm{ft}^{3}$
- Depth into the paper is 40 m

Find

- Determine (a) horizontal F_{H} and vertical F_{V} hydrostatic forces on the wall and (b) magnitude and angle of the resultant force F_{R}.

Solution

(a) Horizontal and vertical force

$$
\begin{gathered}
F_{H}=\gamma h_{c} A(+2.5) \\
F_{H}=(9.79)\left(\frac{18}{2}\right)(18 \times 40)=63,439 \mathrm{kN} \quad(+0.5) \\
F_{V}=\gamma \bigvee(+2.5) \\
F_{V}=(9.79)\left(\frac{\pi}{4}\right)(18)^{2}(40)=99,650 \mathrm{kN} \quad(+0.5)
\end{gathered}
$$

(b) The resultant force

$$
\begin{gathered}
F_{R}=\sqrt{F_{H}^{2}+F_{V}^{2}}(+1.5) \\
F_{R}=\sqrt{(63,439)^{2}+(99,650)^{2}}=118,130 \mathrm{kN} \quad(+0.5) \\
\theta=\tan ^{-1}\left(\frac{F_{H}}{F_{V}}\right)(+1.5)
\end{gathered}
$$

EXAM 3 Solutions

$$
\theta=\arctan \left(\frac{F_{V}}{F_{H}}\right)=\arctan \left(\frac{99,650}{63,439}\right)=57.5^{\circ} \quad(+0.5)
$$

EXAM 3 Solutions

Problem 2: Momentum + energy equation

Information and assumptions

- $V_{1}=9.9 \frac{\mathrm{ft}}{\mathrm{s}}$
- $P_{1}=60 p s i\left(8,640 \frac{l b}{f t^{2}}\right)$
- $\rho=1.94$ slugs $/ f t^{3}$
- $D_{1}=9 i n, D_{2}=3 i n$

Find

- Compute (a) the jet velocity V_{2}, (b) the axial force on the nozzle F_{x}, and (c) the head loss h_{L} in the nozzle. Use $\rho=1.94$ slugs $/ \mathrm{ft}^{3}$ for the water.

Solution

(a) Flow rate

$$
\begin{gathered}
Q=A V \quad(+1.5) \\
V_{2}=\left(\frac{A_{1}}{A_{2}}\right) V_{1}=\left(\frac{D_{1}}{D_{2}}\right)^{2} V_{1}=\left(\frac{9}{3}\right)^{2}(9.9)=89.1 \mathrm{ft} / \mathrm{s} \quad(+0.5)
\end{gathered}
$$

(b) Nozzle force

Momentum equation

$$
\begin{gathered}
\sum F=\sum(\dot{m} V)_{\text {out }}-\sum(\dot{m} V)_{\text {in }} \\
F_{x}=p_{1} \cdot\left(\frac{\pi}{4} D_{1}^{2}\right)+\rho\left[V_{1}^{2}\left(\frac{\pi}{4} D_{1}^{2}\right)-V_{2}^{2}\left(\frac{\pi}{4} D_{2}^{2}\right)\right](+2) \\
=(8640)\left(\frac{\pi}{4}\right)\left(\frac{9}{12}\right)^{2}+(1.94)\left[(9.9)^{2}\left(\frac{\pi}{4}\right)\left(\frac{9}{12}\right)^{2}-(89.1)^{2}\left(\frac{\pi}{4}\right)\left(\frac{3}{12}\right)^{2}\right]=3145 \mathrm{lb} \quad(+0.5)
\end{gathered}
$$

EXAM 3 Solutions

(3) Head loss

$$
\frac{p_{1}}{\gamma}+\frac{V_{1}^{2}}{2 g}=\frac{V_{2}^{2}}{2 g}+h_{L}(+2.5)
$$

Thus,

$$
h_{L}=\frac{8640}{(1.94)(32.2)}+\frac{(9.9)^{2}}{(2)(32.2)}-\frac{(89.1)^{2}}{(2)(32.2)}=16.7 \mathrm{ft} \quad(+0.5)
$$

EXAM 3 Solutions

Problem 3: Dimensional analysis similarity

Information and assumptions

- $\frac{D}{\rho d^{2} V^{2}}=\phi\left(\frac{\rho V d}{\mu}\right)$
- $V=5 \frac{\mathrm{~m}}{\mathrm{~s}}, \rho=1.24 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}, \mu=1.8 \times 10^{-5} \frac{\mathrm{Ns}}{\mathrm{m}^{2}}$
- $D_{m}=2 \mathrm{kN}, \rho_{m}=999 \mathrm{~kg} / \mathrm{m}^{3}, \mu_{m}=10^{-3} \mathrm{Ns} / \mathrm{m}^{2}$
- $\frac{L_{m}}{L}=\frac{1}{20}$

Find

- What water speed is required to model the prototype?
- What will be the corresponding drag on the prototype?

Solution

Similarity requirement
For dynamic similarity,

$$
\begin{equation*}
\frac{\rho_{m} V_{m} d_{m}}{\mu_{m}}=\frac{\rho V d}{\mu} \tag{+4}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
V_{m}=\left(\frac{\rho}{\rho_{m}}\right)\left(\frac{d}{d_{m}}\right)\left(\frac{\mu_{m}}{\mu}\right) V=\left(\frac{1.24}{999}\right)(20)\left(\frac{10^{-3}}{1.8 \times 10^{-5}}\right)(5)=6.9 \mathrm{~m} / \mathrm{s} \tag{+1}
\end{equation*}
$$

Prediction equation

$$
\begin{equation*}
\frac{D}{\rho d^{2} V^{2}}=\frac{D_{m}}{\rho_{m} d_{m}^{2} V_{m}^{2}} \tag{+4}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
D=\left(\frac{\rho}{\rho_{m}}\right)\left(\frac{d}{d_{m}}\right)^{2}\left(\frac{V}{V_{m}}\right)^{2} D_{m}=\left(\frac{1.24}{999}\right)(20)^{2}\left(\frac{5}{6.9}\right)^{2}(2000)=522 \mathrm{~N} \tag{+1}
\end{equation*}
$$

EXAM 3 Solutions

Problem 4: Pipe flow with iteration

Information and assumptions

- $\frac{1}{\sqrt{f}}=-1.8 \log \left[\left(\frac{\varepsilon / D}{3.7}\right)^{1.11}+\frac{6.9}{R e}\right]$
- $\epsilon=0.00015 \mathrm{ft}, v=1.21 \times 10^{-5}$

Find

- Determine flow rate

Solution

Energy equation between the upper water surface 1 to the lower water surface 2,

$$
\frac{p_{1}}{\gamma}+\frac{V_{1}^{2}}{2 \mathrm{~g}}+z_{1}=\frac{p_{2}}{\gamma}+\frac{V_{2}^{2}}{2 \mathrm{~g}}+z_{2}+h_{L}
$$

Since $p_{1}=p_{2}$ and assume $V_{1} \approx 0$ and $V_{2} \approx 0$,

$$
h_{L}=\left(f \frac{L}{D}+\sum K_{L}\right) \frac{V^{2}}{2 \mathrm{~g}}=z_{1}-z_{2}(+4)
$$

Soving for V gives,

$$
V=\sqrt{\frac{2 \mathrm{~g}\left(z_{1}-z_{2}\right)}{f \frac{L}{D}+\sum K_{L}}}[E q .1]
$$

where, $\mathrm{g}=32.2 \mathrm{ft} / \mathrm{s} 2, z_{1}-z_{2}=220 \mathrm{ft}, L=250 \mathrm{ft}, D=2 \mathrm{in}$., and $\sum K_{L}=4 \times 0.15+2 \times 20+14 \times 1.5+0.5+$ $1.0=63.1$. Thus,

$$
V=\sqrt{\frac{14168}{1500 f+63.1}} \quad(+1)
$$

EXAM 3 Solutions

Reynolds number

$$
R e=\frac{V D}{v}=\frac{(12.4)(2 / 12)}{1.21 \times 10^{-5}}=13774 V[E q .2](+1)
$$

For a commercial steel pipe,

$$
\begin{equation*}
\frac{\varepsilon}{D}=\frac{0.00015}{2 / 12}=0.0009 \tag{+1}
\end{equation*}
$$

Friction factor

$$
f=\left[-1.8 \log \left[\left(\frac{0.0009}{3.7}\right)^{1.11}+\frac{6.9}{R e}\right]\right]^{-2}=>f=\left[-1.8 \log \left[9.7388 \times 10^{-5}+\frac{6.9}{R e}\right]\right]^{-2}[E q .3]
$$

Using equation 1,2 and 3.
Assume $f=0.019$,
$V=12.4 \mathrm{ft} / \mathrm{s} \rightarrow R e=1.713 \times 10^{5} \rightarrow f_{\text {new }}=0.021$
$V_{\text {new }}=12.2 \mathrm{ft} / \mathrm{s} \rightarrow R e=1.686 \times 10^{5} \rightarrow f_{\text {new }}=0.021 \rightarrow \operatorname{converged}(+2)$

$$
Q=V A=(12.2) \frac{\pi}{4}\left(\frac{2}{12}\right)^{2}=\mathbf{0 . 2 7} \mathbf{f t}^{3} / \mathbf{s} \quad(+1)
$$

EXAM 3 Solutions

Problem 5: Boundary layer

Information and assumptions

- $V=123.2 \mathrm{ft} / \mathrm{s}$
- $\quad \rho=0.001756$ slugs $/ \mathrm{ft}^{3}$ and $\mu=3.7 \times 10^{-7} \mathrm{lb}-\mathrm{s} / \mathrm{ft}^{2}$
- Flat plate model with $L=785 f t, W=132 \pi$

Find

- Estimate the power needed to overcome skin friction

Solution

Reynolds number

$$
\begin{gather*}
R e_{L}=\frac{\rho U L}{\mu}=\frac{(0.001756)(123.2)(785)}{3.7 \times 10^{-7}}=4.59 \times 10^{8} \tag{+1.5}\\
R e_{L}=4.59 \times 10^{8} \quad(+0.5)
\end{gather*}
$$

Skin drag coefficient,

$$
\begin{gather*}
C_{f}=\frac{0.455}{\left(\log _{10} R e_{L}\right)^{2.58}}(+4.5) \\
=\frac{0.455}{\left(\log _{10} 4.59 \times 10^{8}\right)^{2.58}}=1.73 \times 10^{-3} \tag{+0.5}
\end{gather*}
$$

Skin drag,

$$
\begin{gathered}
D_{f}=C_{f} \cdot \frac{1}{2} \rho U^{2} A(+1.5) \\
=\left(1.73 \times 10^{-3}\right)\left(\frac{1}{2}\right)(0.001756)(123.2)^{2}(785)[(\pi)(132)]=7505 \mathrm{lb} \quad(+0.5)
\end{gathered}
$$

Power

$$
\begin{equation*}
P=D_{f} \cdot U=(7505)(123.2) / 550=1681 \mathrm{hp} \tag{+1}
\end{equation*}
$$

EXAM 3 Solutions

Problem 6: Bluff body drag

Information and assumptions

- $\quad \rho=2.28 \times 10^{-3}$ slugs $/ \mathrm{ft}^{3}, v=1.57 \times 10^{-4} \mathrm{ft}^{2} / \mathrm{s}, \rho_{\text {ice }}=1.84$ slugs $/ \mathrm{ft}^{3}$.
- $D=1.5 \mathrm{in}$
- $C_{D}=0.5$
- Neglect the buoyant force on the hail

Find

- (a) Estimate the velocity U of the updraft needed to make $D=1.5$-in.-diameter (i.e., "golf ballsized") hail
- (b) Show whether this assumed C_{D} value is reasonable or not by using the chart in Appendix B.

Solution

(a) Terminal velocity

Since the weight and drag are in balance for the falling hail at its terminal velocity U,

$$
\begin{array}{r}
\text { Weight }=\text { Drag }(+2) \\
\rho_{\text {ice }} g \cdot \frac{\pi}{6} D^{3}=\frac{1}{2} \rho U^{2} \frac{\pi}{4} D^{2} C_{D} \tag{+4}
\end{array}
$$

By solving for the velocity,

$$
\begin{equation*}
U=\sqrt{\frac{4}{3} \cdot \frac{\rho_{\mathrm{ice}}}{\rho} \cdot \frac{\mathrm{~g} D}{C_{D}}}=\sqrt{\frac{4}{3} \cdot \frac{1.84}{2.28 \times 10^{-3}} \cdot \frac{(32.2)(1.5 / 12)}{0.5}}=93.1 \mathrm{ft} / \mathrm{s} \tag{+2}
\end{equation*}
$$

(b) Reynolds number

$$
R e=\frac{U D}{v}=\frac{(91.2)(1.5 / 12)}{1.57 \times 10^{-4}}=7.41 \times 10^{4}
$$

For this value of $R e, C_{D} \approx 0.5$ from the chart in Appendix B. Thus, the assumed C_{D} value in (a) was reasonable. (+2)

