November 9, 2016

1. A curved nozzle assembly that discharges to the atmosphere is shown in Fig. 1. The nozzle mass is 4.5 kg and its internal volume is $0.002 \mathrm{~m}^{3}$. The fluid is water ($\rho=999 \mathrm{~kg} / \mathrm{m}^{3}$). Determine (a) the velocity V_{2} at the nozzle exit and (b) the vertical component of the reaction force, Ry, exerted by the nozzle on the coupling to the inlet pipe.

Fig. 1
2. Fig. 2 shows a pump testing setup. Water is drawn from a large sump and pumped through a pipe containing a valve. The water is discharged into a catch tank sitting on a scale. During a test run, 360 kg of water ($\rho=999 \mathrm{~kg} / \mathrm{m}^{3}$) is collected in the catch tank in 15 s . The pump power input to the fluid during this period is 950 W . Calculate (a) the water flow rate Q in the pipe and the velocity V_{2} at the exit and (b) the head loss h_{L} in the pipe and valve.

Sump

Fig. 2

November 9, 2016

3. Consider a steady, incompressible, laminar flow of a Newtonian fluid between two infinite fixed-walls (Fig. 3). The two walls are separated each other at a distance h and both inclined at an angle α. There is no applied pressure gradient $(\partial P / \partial x=0)$. Instead, the fluid flows down the pipe due to gravity alone. We adopt the coordinate system shown, with x down the inclined wall. By assuming the flow is parallel and fully developed, the x-momentum equation reduces as,

$$
\frac{d^{2} u}{d y^{2}}=-\frac{\rho \mathrm{g} \sin \alpha}{\mu}
$$

(a) Solve the equation by using appropriate boundary conditions for this problem and (b) if the fluid is an engine oil at $60^{\circ} \mathrm{C}\left(\rho=864 \mathrm{~kg} / \mathrm{m}^{3}\right.$ and $\left.\mu=7.25 \times 10^{-2} \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}\right)$ and $h=1 \mathrm{~cm}$ and $\alpha=45^{\circ}$, calculate the volume flow rate q per unit depth and the average velocity V between the walls.

Fig. 3
4. A boundary layer is a thin region (usually along a wall) in which viscous forces are significant and within which the flow is rotational. Consider a boundary layer growing along a thin flat plate (Fig. 4). The flow is steady. The boundary layer thickness δ is a function of downstream distance x, free-stream velocity U, and fluid density ρ and viscosity μ. (a) Use the Buckingham Pi theorem to show how many dimensionless parameters are associated with this problem and (b) use the method of repeating variables to generate a dimensionless relationship for δ as a function of the other parameters. Show all your work.

Fig. 4

