December 16, 2015

1. Curved wall $A B C$ in Figure 1 is a quarter circle 9 ft wide (into the paper). Compute the (a) horizontal F_{H} and (b) vertical F_{V} hydrostatic forces on the wall and (c) the line of action (i.e., the angle θ) of the resultant force F_{R}. $\left(\gamma_{\text {water }}=62.4 l b / f t^{3}\right)$

Figure 1
2. For the frictionless cart in Figure 2, compute (a) the x-component of the force on the wheels, F_{x}, caused by deflecting the water jet ($\rho=998 \mathrm{~kg} / \mathrm{m}^{3}$) and (b) the compression of the spring, Δx, if its stiffness is $k=1.6 \mathrm{kN} / \mathrm{m}$. For part (b), use the Hook's law, $F_{x}=-k \Delta x$. Assume steady state and circular cross sectional area for the water jet.

Figure 2

December 16, 2015

3. The pressure rise, Δp, across a centrifugal pump in Figure 3(a) can be expressed as $\Delta p=f(D, \omega$, ρ, Q), where D is the impeller diameter, ω the angular velocity of the impeller (unit for ω is T^{-1}), ρ the fluid density, and Q the volume rate of flow through the pump. (a) By using dimensional analysis, show that the two pi terms of this problem are $\Pi_{1}=\Delta p / \rho \omega^{2} D^{2}$ and $\Pi_{2}=Q / \omega D^{3}$. (b) A model pump having a diameter of 8 in . is tested in a laboratory using water ($\rho=998 \mathrm{~kg} / \mathrm{m}^{3}$). When operated at an angular velocity of $40 \pi \mathrm{rad} / \mathrm{s}$ the model pressure rise as a function of Q is shown in Figure 3(b). Use this curve to predict the pressure rise across a geometrically similar pump (prototype) for a prototype flowrate of $6 \mathrm{ft}^{3} / \mathrm{s}$. The prototype has a diameter of 12 in . and operates at an angular velocity of $60 \pi \mathrm{rad} / \mathrm{s}$. The prototype fluid is also water.

Centrifugal pump
Figure 3(a)

Figure 3(b)
4. If the pump shown in Figure 4 adds a head of 52 ft , determine the flow rate Q for the system. Do not neglect minor losses. Assume $f=0.01$ as your first guess then use the equation below for the remaining iterations until f converges to the thousandth decimal place. (Note: $1 \mathrm{psi}=144 \mathrm{lbf} / \mathrm{ft}^{2}$, $\mathrm{g}=32.2 \mathrm{ft} / \mathrm{s}^{2}, \rho=1.94$ slugs $/ \mathrm{ft}^{3}, \mu=2.34 \times 10^{-5} \mathrm{lbf} \cdot \mathrm{s} / \mathrm{ft}^{2}, \gamma=62.4 \mathrm{lbf} / \mathrm{ft}^{3}, \varepsilon=0.00016 \mathrm{ft}$ and $\mathrm{D}=2 \mathrm{ft}$)

$$
\frac{1}{\sqrt{f}}=-1.8 \log \left[\left(\frac{\varepsilon / D}{3.7}\right)^{1.11}+\frac{6.9}{R e}\right]
$$

Figure 3

December 16, 2015

5. The fixed keel of a Columbia 22 sailboat is about 38 in long as shown in Figure 5. Moving in Lake Ontario at a speed of (a) 2 knots and (b) 10 knots, what is the skin friction drag D_{f} from the keel, respectively? The water is at $40^{\circ} \mathrm{F}\left(v=1.664 \times 10^{-5} \mathrm{ft}^{2} / \mathrm{s}\right.$ and $\left.\rho=1.94 \mathrm{slugs} / \mathrm{ft}^{3}\right)$. Solve this problem using rectangular plate of length 38 in and width 24.5 in , which is the average width of the keel. Transition takes place at Reynolds number of 5×10^{5}. Note: 1 knot $=1.689 \mathrm{ft} / \mathrm{s}$. See the Appedix A at the end of this exam for the friction drag coeeficient, C_{f}.

Figure 5
6. A heavy sphere attached to a string should hang at an angle θ when immersed in a stream of velocity U, as shown in Figure 6(a). Knowing that the sphere should hang so that the string tension T balances the resultant of drag and net weight as shown in Figure 6(b), find (a) the net weight W, (b) the drag, and (c) the angle θ if the sphere is steel ($\rho_{s}=7,844 \mathrm{~kg} / \mathrm{m}^{3}$) and diameter 3 cm and the flow is sea-level standard air ($\rho_{\text {air }}=1.225 \mathrm{~kg} / \mathrm{m}^{3}$ and $\mu_{\text {air }}=1.78 \times 10^{-5} \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}$) at $U=$ $40 \mathrm{~m} / \mathrm{s}$. (Volume $V=\pi D^{3} / 6$ for a sphere of diameter D). Neglect the string drag and the buoyancy force on the sphere, and use the Appendix B of this exam for the drag coefficient C_{D} if necessary.

Figure 6(a)

Figure 6(b)

December 16, 2015

Appendix A. Friction drag coefficient for flat plate

Appendix B. Drag coefficient for a smooth sphere and a smooth cylinder

