November 16, 2015

1. Water flows steadily through the nozzle shown in Fig. 1, discharging to atmosphere. Calculate (a) the jet velocity V_2 at the nozzle end, (b) the pressure p_1 at the flanged joint, and (c) the horizontal component of the anchoring force F_x to keep the nozzle in place. The elevation difference is 12 in. and no loss between the flanged joint and the nozzle end (i.e., between sections 1 and 2). Use $\rho = 1.94$ slugs/ft³ and $\gamma = 62.4$ lb/ft³ for water and g = 32.2 ft/s².

2. A capillary tube of inside diameter d = 6 mm connects tank A and open container B as shown in Fig. 2. The liquid in A, B, and capillary CD is water having a specific weight $\gamma = 9,780$ N/m³ and a viscosity of $\mu = 0.0008$ N·s/m². The pressure $p_A = 34.5$ kPa gage. Neglecting the minor losses at C and D, determine the flow rate Q through the capillary tube. Assume laminar flow from A to B and use $h_f = 32 \mu L V/\gamma d^2$ for the friction loss, where V is the water velocity through the capillary tube.

Figure 2

November 16, 2015

3. A viscous liquid flows down an inclined plane surface in a steady, fully developed laminar film of thickness *h* and width *b* (out of the paper) as shown in Fig. 3. A useful approximation of the flow is

$$\mu \frac{d^2 u}{dv^2} = -\rho g_x$$

where, $g_x = g \cdot \sin \theta$ is the *x*-component of the gravity acceleration. (a) Derive an expression for the velocity distribution u(y) by integrating the given equation then applying the free-shear (i.e., du/dy = 0) boundary condition at the top and the no-slip boundary condition at the bottom. (b) If the liquid is SAE 30 oil at 15.6°C ($\rho = 912 \text{ kg/m}^3$ and $\mu = 0.38 \text{ N} \cdot \text{s/m}^2$) and h = 1 mm, b = 1 m, and $\theta = 15^\circ$, find the volume flow rate, $Q = \int_0^h u(y)bdy$.

Figure 3

4. In some speed ranges, vortices are shed from the rear of bluff cylinders placed across a flow. The vortices alternately leave the top and bottom of the cylinder, as shown in Fig. 4. The vortex shedding frequency, *f*, is thought to dependent on fluid density, ρ , and viscosity, μ , cylinder diameter, *d*, and free-stream velocity, *V*. (a) Use dimensional analysis to develop a functional relationship for *f*. (b) Vortex shedding occurs in standard air on two cylinders with diameters d_m and d_p , respectively. If the diameter ratio is $d_p/d_m = 2$, determine the velocity ratio, V_p/V_m , for dynamic similarity, and the ratio of vortex shedding frequencies, f_p/f_m . For part (a), use the *MLT* unit system.

$$V \rightarrow$$
 $Vortices$
 $- d \leftarrow$

Figure 4