November 16, 2015

1. Water flows steadily through the nozzle shown in Fig. 1, discharging to atmosphere. Calculate (a) the jet velocity V_{2} at the nozzle end, (b) the pressure p_{1} at the flanged joint, and (c) the horizontal component of the anchoring force F_{x} to keep the nozzle in place. The elevation difference is 12 in . and no loss between the flanged joint and the nozzle end (i.e., between sections 1 and 2). Use $\rho=1.94$ slugs $/ \mathrm{ft}^{3}$ and $\gamma=62.4 \mathrm{lb} / \mathrm{ft}^{3}$ for water and $\mathrm{g}=32.2 \mathrm{ft} / \mathrm{s}^{2}$.

Figure 1
2. A capillary tube of inside diameter $d=6 \mathrm{~mm}$ connects tank A and open container B as shown in Fig. 2. The liquid in A, B, and capillary $C D$ is water having a specific weight $\gamma=9,780 \mathrm{~N} / \mathrm{m}^{3}$ and a viscosity of $\mu=0.0008 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}$. The pressure $p_{A}=34.5 \mathrm{kPa}$ gage. Neglecting the minor losses at C and D, determine the flow rate Q through the capillary tube. Assume laminar flow from A to B and use $h_{f}=32 \mu L V / \gamma d^{2}$ for the friction loss, where V is the water velocity through the capillary tube.

Figure 2

November 16, 2015

3. A viscous liquid flows down an inclined plane surface in a steady, fully developed laminar film of thickness h and width b (out of the paper) as shown in Fig. 3. A useful approximation of the flow is

$$
\mu \frac{d^{2} u}{d y^{2}}=-\rho \mathrm{g}_{x}
$$

where, $\mathrm{g}_{x}=\mathrm{g} \cdot \sin \theta$ is the x-component of the gravity acceleration. (a) Derive an expression for the velocity distribution $u(y)$ by integrating the given equation then applying the free-shear (i.e., $d u / d y=0$) boundary condition at the top and the no-slip boundary condition at the bottom. (b) If the liquid is SAE 30 oil at $15.6^{\circ} \mathrm{C}\left(\rho=912 \mathrm{~kg} / \mathrm{m}^{3}\right.$ and $\left.\mu=0.38 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}\right)$ and $h=1$ $\mathrm{mm}, b=1 \mathrm{~m}$, and $\theta=15^{\circ}$, find the volume flow rate, $Q=\int_{0}^{h} u(y) b d y$.

Figure 3
4. In some speed ranges, vortices are shed from the rear of bluff cylinders placed across a flow. The vortices alternately leave the top and bottom of the cylinder, as shown in Fig. 4. The vortex shedding frequency, f, is thought to dependent on fluid density, ρ, and viscosity, μ, cylinder diameter, d, and free-stream velocity, V. (a) Use dimensional analysis to develop a functional relationship for f. (b) Vortex shedding occurs in standard air on two cylinders with diameters d_{m} and d_{p}, respectively. If the diameter ratio is $d_{p} / d_{m}=2$, determine the velocity ratio, V_{p} / V_{m}, for dynamic similarity, and the ratio of vortex shedding frequencies, f_{p} / f_{m}. For part (a), use the MLT unit system.

Figure 4

