October 14, 2015

1. A piston is moving through a cylinder at a speed of $19 \mathrm{ft} / \mathrm{s}$, as shown in Fig. 1 (left). The film of oil separating the piston from the cylinder has a viscosity of $0.020 \mathrm{lb} \cdot \mathrm{s} / \mathrm{ft}^{2}$. What is (a) the shear stress τ at the piston surface and (b) the force F_{f} required to maintain this motion? Assume a cylindrically symmetric, linear velocity profile for the flow of oil in the film as shown in Fig. 1 (right). (Note: $1 \mathrm{ft}=12 \mathrm{in}$)

Figure 1
2. The gate shown in Fig. 2 is hinged at H. The gate is $3-\mathrm{m}$ wide normal to the plane of the diagram. Calculate (a) the hydrostatic force against the gate, F_{R}, (b) pressure center, y_{R}, and (c) the force F required at A to hold the gate closed. ($\gamma=9.8 \mathrm{kN} / \mathrm{m}^{3}$ for water)

Figure 2

October 14, 2015

3. For the Venturi meter shown in Fig. 3, the deflection of mercury in the differential gage is 14.3 in . Determine the (a) pressure drop $\Delta p=p_{A}-p_{B}$ between A and B and (b) flow rate Q of water through the meter. Assume no energy loss between A and B. (Note: $1 \mathrm{ft}=12 \mathrm{in}, \gamma=64.2 \mathrm{lb} / \mathrm{ft}^{3}$ for water, $\mathrm{SG}=13.6$ for mercury, and $\mathrm{g}=32.2 \mathrm{ft} / \mathrm{s}^{2}$)

Figure 3
4. The two-dimensional velocity components $u=K x$ and $v=-K y$ are used to represent the flow against an infinite plane boundary as illustrated in Fig. 4. The constant K has the unit of $1 / \mathrm{s}$, and x and y are in meters. If $K=2$, find the (a) acceleration components a_{x} and a_{y} and (b) pressure gradient $\partial p / \partial y$, at $x=0, y=1$. For part (b), use the following Navier-Stokes equation,

$$
\rho a_{y}=-\frac{\partial p}{\partial y}+\mu\left(\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}\right)
$$

where, $\rho=998 \mathrm{Kg} / \mathrm{m}^{3}$ and $\mu=1.003 \times 10^{-3} \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}$.

Figure 4

