NAME
Fluids-ID

Quiz 3. A piezometer and a Pitot tube are tapped into a horizontal water pipe to measure static and stagnation pressures. For the indicated water column heights in the figure, determine the velocity at the center of the pipe.

- Bernoulli Eq.:

$$
\frac{p_{1}}{\rho g}+\frac{V_{1}^{2}}{2 g}+z_{1}=\frac{p_{2}}{\rho g}+\frac{V_{2}^{2}}{2 g}+z_{2}
$$

Solution:
Noting that point 2 is a stagnation point and thus $V_{2}=0$ and $z_{1}=z_{2}$, the application of the Bernoulli equation between points 1 and 2 gives
or

$$
\frac{p_{1}}{\rho g}+\frac{V_{1}^{2}}{2 g}+\not / 1=\frac{p_{2}}{\rho g}+\frac{V_{2}^{2}}{2 g}+\not 2 / 2
$$

$$
\begin{equation*}
\frac{V_{1}^{2}}{2 g}=\frac{p_{2}-p_{1}}{\rho g} \tag{+5points}
\end{equation*}
$$

The gage pressures at points 1 and 2 can be expressed as

$$
\begin{gather*}
p_{1}=\rho g\left(h_{1}+h_{2}\right) \tag{+3points}\\
p_{2}=\rho g\left(h_{1}+h_{2}+h_{3}\right)
\end{gather*}
$$

Substituting the p_{1} and p_{2} expressions into the Bernoulli equation and solving for V_{1} gives

$$
V_{1}=\sqrt{2 g h_{3}}=\sqrt{2\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)(0.12 \mathrm{~m})}=1.53 \mathrm{~m} / \mathrm{s}
$$

