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Overview of frequency response 

Bode plots are a graphical representation of the response of a system to a steady-state sinusoidal 
input. Specifically, for a system with a transfer function H(s), the response to a sinusoid may be 
shown as: 

where M = |H(jω0)| and φ = ∠H(jω0). Of course, the same picture holds if the input is a sinusoidal 
function of time instead of a cosine input. 

Here we use the notation ω0 to indicate that we are considering a sinusoid with a specific input 
frequency. The key result is that an input sinusoid leads, in steady-state, to an output sinusoid 
of the same frequency. The amplitude at the output is scaled by a factor of M relative to the 
input amplitude, and the phase at the output is shifted by an amount φ relative to the input. The 
terms M and φ are calculated by evaluating the magnitude and phase of the transfer function with 
the pure imaginary argument jω0. 

The underlying mathematics behind the result stated above come from recognizing the particularly 
simple form of the particular solution when the input driving function is a complex exponential. 
That is, if a system input has the form es0t, a particular solution is given by H(s0)es0t . This is 
shown graphically below: 
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In the case that we are interested in the sinusoidal steady-state, we set s0 = jω0, since the real 
and imaginary parts of ejω0t are cos ω0t and sin ω0t, respectively. It is computationally far simpler 
to work with the complex exponential input and its associated particular solution, and then take 
the real or imaginary parts after the fact to find the solution to a sinusoidal input. The operation 
of taking the real or imaginary part is valid due to the linearity of the the system H(s). Because 
the system is linear, it simultaneously and independently processes the real and imaginary parts of 
the signal, and these two components can be separated at the output. This situation is shown below 

where, as before, M = |H(jω0)| and φ = ∠H(jω0). 

This last result can be demonstrated as follows. If we define M and φ as above, then it holds that 

H(jω0) = Mejφ, (1) 

and thus that 
H(jω0)ejω0t = Mejφejω0t = Mej(ω0t+φ). (2) 

The real part of the last term above is M cos(ω0t + φ), and the imaginary part is M sin(ω0t + φ) 
as shown in the figure. Thus we have shown that a sinusoidal input is scaled in amplitude by the 
factor M , and shifted in phase by an amount φ. 
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A time domain view of this result is shown below:


Here, the input is chosen as u(t) = sin t, and the output is M sin(t+φ), where we have set M = 0.707 
and φ = −π/4. For the purposes of this plot, we set ω0 = 1, but if the time axes were redefined 
as t� = ω0t, then this plot is valid for all ω0. 

There are a couple points to make about the plot. First, the period T of the sinusoids is T = 2π/ω0, 
and thus has the value T = 2π sec for ω0 = 1. The input oscillates bewteen peak values of ±1, 
whereas the output oscillates bewteen peak values of ±M . Finally, the time shift between equivalent 
phase points on the output relative to the input is related to the phase shift φ as 

Δt 
T 

= 
φ 
2π 

(3) 

and thus 
Δt = 

φ 
2π 

T. (4) 

We count a time delay as negative phase and thus a negative time shift. In the plot as shown, 
φ = −π/4, and thus, for ω0 = 1, Δt = −π/4 sec. 

As a final comment, note that we have selected the input amplitude as unity, and the input phase 
shift as zero. However, if we were to scale the input by some factor, this would simply multiply 
both waveforms, and so would just be a redefinition of the scale-factor of the axes. The ratio of 
output to input would remain equal to M . Further, if we were to give the input a nonzero phase 
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shift, this would just shift both waveforms in time, with the relative phase shift remaining equal 
to φ. This would just be a redefinition of the point t = 0. The conclusion then is that the plot 
above shows the essential features for understanding frequency response for any choice of input 
amplitude or phase shift. The linear system H acts to scale the amplitude by M , and shift the 
phase by φ. 

In the discussion above, we have assumed a given input frequency ω0, but if we now let the frequency 
vary, then it is clear that we can characterize the frequency response for any input frequency ω, by 
plotting M and φ as a function of ω. 

In a Bode plot, we plot M(ω) on a log-log scale, and φ(ω) on a semi-log scale. The reason for doing 
this is that we are frequently interested in a wide range of frequency and amplitudes, and a log-
log plot allows showing such wide dyamic range with equal resolution in each decade of response. 
However, since phase typically varies in a limited range, it is plotted on linear axes versus frequency 
on log axes. 

Another strong advantage of taking a frequency response viewpoint is that the Bode plot for real 
systems can be readily measured using an instrument referred to as a dynamic analyzer. It is 
usually far more accurate to develop a model for a linear system by taking frequency response 
measurements and then fitting these measurements to some model, as opposed to making a time-
response measurement for an input such as a step. 
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2 Example system Bode plot 

An example experimentally-determined Bode plot appears as follows. This plot is taken from the 
Doctoral thesis work of Steve Ludwick1, and shows the response for an electromagnetically-driven 
tool axis which carries and positions a diamond cutting tool in a novel fast tool servo which Ludwick 
developed. The Bode plot represents the response from motor torque command in volts to angular 
output in radians as measured by a rotary encoder. 

In this plot, the frequency response is presented with magnitude versus frequency in the top panel, 
and phase versus frequency in the bottom panel. This is the typical Bode plot format. The 
frequency axis is in units of Hertz (cycles/sec) rather than the radians/sec units that the theory 
presented earlier assumes. Both are acceptable units for frequency, however it is required that the 
plolt clearly label the associated units. The relationship between these is ω = 2πf , where f is in Hz 
and ω is in units of rad/sec. Note also the logarithmically-scaled axes for frequency and magnitude, 
and the linear axes for phase shift. 

In this particular plot, the logarithmic scaling of the magnitude is accomplished by plotting mag­
nitude in units of decibels, which are abbreviated as dB. The definition of dB is 

dB = 20 log10(M) (5) 

Ludwick, Stephen, “High-Speed Lens Cutting Machine,” Ph.D. Thesis, MIT Dept. of Mechanical Engineering, 
June, 1999 
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where M is the transfer function magnitude as defined earlier. Thus a magnitude of M = 100 
is equivalent to 40 dB, and so on. Bode plots can be labelled either with the magnitude M on a 
logrithmically-scaled axis, or with the magnitude in dB on a linearly scaled axis. It is my preference 
to label with M directly, since this is the quantity of most direct interest, and avoids computations 
to convert back from dB. However, common plotting software, such as the bode.m routine in Matlab, 
plot in terms of dB. 

While it is not strictly correct to take the log of a quantity with dimensions, the standard practice 
is not to worry about the units when computing dB. Thus, while the indicated transfer function 
magnitude is in units of rad/V, when computing the magnitude in dB, we simply take 20 log10(M) 
without consideration for the units of M . 

The magnitude plot passes through -60 dB at a frequency of about 100 Hz. Given the definition 
of dB above, this means that the transfer function magnitude has a value of 10−3 at a frequency 
of 100 Hz. Further, the phase shift is equal to −180◦ at this frequency. 

Putting this information together, if the input voltage has an amplitude of 1 V at a frequency of 
100 Hz, then we can write the input as vin(t) = 1 sin(2π100t) V. Given the Bode plot magnitude and 
phase at this frequency, then we can compute the output angle as θout(t) = 10−3 sin(2π100t−π) rad. 
That is, the output amplitude is 1 milliradian, with a phase shift of −π relative to the input voltage. 
Note here that we’ve converted 100 Hz to 2π100 rad/sec, and the phase shift of −180◦ to −π, since 
the argument of sine must be in radians. 

In this design, it was key to have the tool axis transfer function with its resonant frequencies as 
high as possible. The peaks in the magnitude plot show that the first resonant frequency is at 
910 Hz, and the second resonant frequency is at 2280 Hz. These are remarkably high for such an 
electromechanical axis. By keeping the resonant frequencies high, it was possible to implement a 
relatively high-bandwidth closed-loop control bandwidth, and thereby achieve accurate and rapid 
control of the axis. 

The experimental data in this plot was taken for a number of varying input amplitudes, which 
results in the variations in the plots shown at low frequency. This effect is due to the rolling 
characteristics of the axis bearings as a function of amplitude. As seen in the plot, however, the 
measurements are largely amplitude-independent for frequencies above about 30 Hz. Also note 
that the experimental data becomes somewhat noisy above about 2200 Hz, and thus is not likely 
reliable above this frequency. 

A transfer function model was fitted to this data, and the Bode plot for the model is overlaid on 
the plot. The fitted model is 
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where ωn1 = 2π910 rad/sec, ωn2 = 2π2285 rad/sec, ζ1 = 0.01, and ζ2 = 0.005. The model is of 
sixth order, plus a time delay. The time delay has a value of 200 µsec, and is due to the finite 
computational time of the computer-based controller associated with this axis, computations in 
the encoder interface electronics, as well as the characteristics of the sampling operation associated 

swith such digital controllers. The term e−2×10−4
represents this time delay (we later show that 
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the transfer function of a time delay of T seconds is e−Ts). The time delay affects only the phase 
plot, and is responsible for the sagging of the phase to more negative values at high frequencies. 

The machine itself which houses this axis is shown schematically in cross-section with the rotational 
axis oriented vertically at the left of the figure: 
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Schematic of Rotary Fast-Tool Servo

A picture of the hardware setup is shown below. The tool axis is housed in the cast-iron block at

the left in the picture. 
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3 Bode plots for some basic building blocks 

The goal of this section is to show how to sketch Bode plots for some basic terms which appear in 
transfer functions. Once the plots for these building blocks are well-understood, it is a fairly simple 
matter to draw the Bode plot for more complex transfer functions. We start with single real-axis 
zeros and poles and then move on to discussing complex conjugate zeros and poles. 

3.1 Zeros at the origin 

This section develops the Bode plots for H1(s) = s and H2(s) = s2 . These have one and two zeros 
at the origin, respectively: 

The corresponding Bode plots are
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3.2 Poles at the origin 

This section develops the Bode plots for H1(s) = 1/s and H2(s) = 1/s2 . These have one and two 
poles at the origin, respectively: 

The corresponding Bode plots are
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4 Bode plot sketching rules 
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