Engineering Economy Review

John D. Lee
Industrial Engineering

Main concepts

■ Models are approximations of reality (THINK)

■ Time value of money, cash flow diagrams, and equivalence

■ Comparison of alternatives

■ Depreciation, inflation, and interest rates

Suggestions for solving problems

- Lookup unfamiliar terms in the index
- Draw cash flow diagrams
- Identify P, A, F, i
- Be flexible in using equations and tables
- Check with alternate methods

Cash flows

■ Cash flows describe income and outflow of money over time
■ Disbursements =outflows "-"
■ Receipts =inflows " + "

- Beginning of first year is traditionally defined as "Time 0"

Equivalence

- Translating cashflows over time into common units
- Present values of future payments
- Future value of present payments
- Present value of continuous uniform payments
- Continuous payments equivalent to present payment

Single Payment Compound Interest

■ P= (P)resent sum of money
■ i= (i)nterest per time period (usually years)
■ MARR=Minimal Acceptable Rate of Return
■ $\mathrm{n}=$ (n)umber of time periods (usually years)
$■ \mathbf{F}=(\mathrm{F})$ uture sum of money that is equivalent to \mathbf{P} given an interest rate \mathbf{i} for \mathbf{n} periods

■ $F=P(1+i)^{n}$
■ $\mathrm{F}=\mathrm{P}(\mathrm{F} / \mathrm{P}, \mathrm{i}, \mathrm{n})$

$$
\begin{gathered}
\mathrm{P}=\mathrm{F}(1+\mathrm{i})^{-\mathrm{n}} \\
{ }_{6} \mathrm{P}=\mathrm{F}(\mathrm{P} / \mathrm{F}, \mathrm{i}, \mathrm{n})
\end{gathered}
$$

Bank example

■ You 1000 deposit
■ 12\% per year

- 5 years

■ How much do you have at end if compounded yearly?
■ How much do you have at end if compounded monthly?

5.47 Income from savings

■ 25,000 deposited

- Account pays 5\% compounded semiannually
- Withdrawals in one year and continuing forever

■ Maximum equal annual withdrawal equals?

5.47 Capitalized cost problem

- A=iP

Key points to remember

- Time value of money
- $\$ 1000$ today is not the same as $\$ 1000$ one hundred years from nOW
- Money in the future is worth less than present sums
- Cash flow diagrams
- Starts at year zero
- Superposition to convert to standard forms
- Equivalence
- Functional notation, F=P(F/P,i,n)
- i and n must match units
- Capitalized cost, A=Pi, P=A/i

Comparison of alternatives

■ Present/Future worth

- Cash flow

■ Rate of return

- Cost benefit
- Payback period

■ Breakeven analysis

Present/Future worth

■ Determine time period for analysis, least common multiple

- Calculate present value for each alternative
- Draw cashflow diagram
- Identify/calculate A, i, P, F, n
- Use present value equations to determine P
- Compare costs

Tomato peeling machines

Machine A
Purchase cost=\$52,000
Annual cost=\$15,000/year
Annual benefit= $\$ 38,000 /$ year
Salvage value= $\$ 13,000$
Useful life= 4 years

Machine B
\$63,000
\$9,000/year
\$31,000 /year
\$19,000
6 years

Present cost of A

Present cost of B

Cash flow analysis

- Determine time period for analysis: common multiple OR continuing operation then doesn't require least common multiple
■ Calculate annual cost/benefit/profit for each alternative
- Draw cashflow diagram
- Identify/calculate A, S, i, P, F, n
- Use uniform payment equations to determine A
- Compare annual costs

Cash flow analysis

■ Provides a shortcut for long/infinite analysis periods or when least common multiple might be a long time period with lots of calculations

- Compare on the basis of annual cost if EITHER
- Common multiple (e.g., 2 years and 8 years)

OR

- Continuing operation (e.g., business will keep operating indefinitely with ability to replace equipment)

Rate of return analysis

- Draw cash flow diagram of each alternative
- Draw combined cash flow diagram (higher initial cost- lower initial cost)
■ Convert to Present worth and Present costs OR
Convert to EUAB and EUAC
- Write equation
- Solve for i
- If $R O R \geq M A R R$, choose higher-cost alternative

7-52: Purchase vs. Lease

■ Purchase machine:
■ \$12,000 initial cost
■ \$1,200 salvage value

- Lease machine

■ \$3,000 annual payment

■ 15\% MARR, 8 year useful life

7-52: Purchase vs. Lease

Purchase-Lease

PW of Benefits-PW of Costs=0 3000(P/A,i,7)+4200(P/F,i,8)-12,000= 0
$\mathrm{i}=17 \% 3000(3.922)+4200(0.2848)-12,000=962$
$i=18 \% 3000(3.812)+4200(0.2660)-12,000=553$
$i=20 \% 3000(3.605)+4200(0.2326)-12,000=-208$

7-52: Purchase vs. Lease

7-52: Purchase vs. Lease

■ Internal rate of return $=17.6 \%$

■ $17.6 \%>15 \%$ therefore choose purchase option

Evaluation of multiple alternatives

- Identify all alternatives
- Compute rate of return of all alternatives
- Delete alternatives with a return< MARR
- Arrange remaining alternatives in order of increasing investment (find alternative where investing component dominates)
- Evaluate first two alternatives
- Repeat evaluation until all alternatives have been evaluated

Repeated evaluation of alternatives

Multiple comparisons of return on incremental investment

General suggestions

■ Think about alternatives

- i<0
- i=0
- A=Pi when salvage value equals initial cost
- P=Ai = Capitalized cost
- Infinite analysis period EUAB-EUAC=NPWi

■ Consider using Present Worth AND EUAB to frame rate of return calculation

Payback period analysis

- Approximate rather than exact calculation
- All costs and profits are included without considering their timing
- Economic consequence beyond payback period are ignored (salvage value, gradient cash flow)
■ May select a different alternative than other methods
■ Focus is speed versus efficiency

Benefit cost ratio

■ Benefit cost ratio analysis

- (PW of benefit/PW of cost ≥ 1)
- Compare incremental investment, similar to rate of return analysis

9.9 Three alternatives

	A	B	C
\square Initial cost	50	150	110
\square AB first	28.8	39.6	39.6
\square Useful life	2	6	4
\square Rate of Return	10%	15%	16.4%
\square Compare using MARR=12\%			

- Future worth
- Benefit cost
- Payback period

Future worth: Option C

Future worth analysis

	A	B	C
■ Initial cost	50	150	110
$■$ AB first	28.8	39.6	39.6
$■$ Useful life	2	6	4
■ Rate of Return	$\mathbf{1 0 \%}$	15%	16.4%
\square Future worth	-18.94	75.17	81.61
- Benefit costs - Payback period			

Benefit-cost ratio analysis

Year	C	A	C-A
0	-110	-50	-60
1	39.6	28.8	10.8
2	39.6	$28.8-50$	60.8
3	39.6	28.8	10.8
4	39.6	28.8	10.8
Present worth of Cost=60			
Present work of benefit=10.8(P/A,12,4)+50(P/F,12,2)			
B/C=72.66/60>1 Reject A 3 l			

Benefit-cost ratio analysis

Year	B	C	B-C
0	-150	-110	-60
$1-4$	39.6	39.6	0
4	0	-110	110
$5-6$	39.6	39.6	0
6	-150	0	-150
$7-8$	39.6	39.6	0
8	0	-110	110
$9-12$	39.6	39.6	0

Benefit-cost ratio analysis

■ PW of cost=40+150(P/F,12\%,6)
■ PW of cost=115.99
■ PW of benefits= 110(P/F,12\%,4)+110(P/F,12\%,8)
■ PW of benefits=114.33

■ B/C=114.33/115.99<1

- Reject B

Payback period

■ A 50/28.8 = 1.74 years
■ B 150/39.6= 3.79 years
■ C 110/39.6= 2.78 years
■ Select A

Summary

	A	B	C
- Initial cost	50	150	110
- AB first	28.8	39.6	39.6
■ Useful life	2	6	4
- Rate of Return	10\%	15\%	16.4\%
- Future worth	-18.94	75.17	81.61
- Benefit cost	$C-A=1.21 \quad B-C=0.98$		
■ Payback period	1.74	3.79	2.78

Motor comparison

Graybar

- Initial cost
- Efficiency

■ Maintenance
■ Electricity cost $\$ 0.072 / \mathrm{kW}$-hour

- 200 hp

■ 20 year useful life, No salvage value
■ Interest rate =10\%

- Hours used to justify expense

Blueball
\$6,000
85\%
300/year

Motor comparison

- Graybar-Blueball>0

■ NPC of Graybar-Blueball= 1000+(300-300)+
(P/A,10\%,20)200*0.746kW/hp*0.072\$/kWhr*HRS(1/0
.89)-
(P/A,10\%,20)200*0.746kW/hp*0.072\$/kWhr*HRS(1/0.85)

■ 1000= $8.514^{*} 0.568 * H R S$

- 206.7 hrs

Key points to remember

■ Present/Future worth

- Use least common multiple
- Cash flow
- Useful for infinite analysis periods
- Rate of return
- Do not use rate of return, but incremental rate of return as criterion
- Set up cash flow as investment

■ Cost benefits

- Use incremental comparison similar to rate of return analysis
- Payback period
- Approximate method that makes huge assumptions
- Breakeven analysis

Interest rates, depreciation, and inflation

■ Concepts that allow more precise modeling of economic decisions
■ Nominal vs effective

- Depreciation
- Straight line
- MACRS (Modified Accelerated Cost Recovery System)
- Book value
- Inflation moderates value of rate of returns

Nominal and effective interest rates

Effective interest rate, i_{p}, (period of compounding=period of interest) is used in formulas:
$i=i_{p}=\left(1+i_{s}\right)^{m}-1$
$\mathrm{i}=\mathrm{i}_{\mathrm{p}}=\left(1+\mathrm{r}_{\mathrm{p}} / \mathrm{m}\right)^{\mathrm{m}}-1$
$\mathrm{i}_{\mathrm{s}}=$ interest per subperiod
$\mathrm{m}=$ number of subperiods in period P
$r_{p}=$ nominal interest per period P
Nominal interest rate, $r_{p}=\mathrm{m} \mathrm{X}_{\mathrm{s}}$
Continuous compounding: $i_{a}=e^{r}-1$

$$
\mathrm{F}=\mathrm{P}\left(1+\mathrm{i}_{\mathrm{a}}\right)^{\mathrm{n}}=\mathrm{P}_{4}^{*} e^{\mathrm{rn}}
$$

Depreciation

■ Depreciation basis= Initial cost(C)- Salvage value (S)
■ Book value $=$ C-Accumulated depreciation

■ Straight line depreciation

- $D_{i}=(C-S) / n$
- $n=$ service life
- MACRS
- $D_{i}=C \times$ Factor from table

Methods for depreciation

■ Book value=cost-depreciation charges
■ Straight line (SL)

- Same amount each year
- Proportional to years of useful life and (initial costsalvage)
■ Sum-of-years (SOYD)
- Initial rate is faster than SL
- Proportional to sum of digits in useful life and (initial cost-salvage)

Methods for depreciation

■ Declining balance, double declining balance (DDB)

- Double declining $=200 \%$ of straight line
- Proportional to years of useful life and book value
- Salvage value not considered
- Declining balance/conversion to straight line (DDB/SL)
- Optimal switch year CANNOT be determined from a simple comparison of depreciation schedules
■ Unit of production (UOP)
- Modified Accelerated $\underset{4}{ }$ Cost Recovery System (MARCS)

Depreciation calculations

Method
Straight line

SOYD

DDB 2(Book value)/N $2 P / N(1-2 / N)$)-1
(P-S)Prod. in year/Total prod. P-sum of dep.

MARCS Table lookup (Property class, year) P-sum of dep.

Depreciation of machine

■ Initial cost of \$50,000

- Salvage value of \$10,000
- Service life of 10 years
- Straight line depreciation=
- $d_{n}=(P-S) / N$

■ $d_{n}=(50,000-10,000) / 10$

- $d_{n}=4,000 /$ year

10.3 Capsulating machine

■ Initial cost= \$76,000
■ Five year useful life

- No salvage value
- Find depreciation schedule
- Straight line
- Sum of years digits
- Double declining balance
- DDB with conversion

10.3 Straight line

Year	Deplyear $\mathrm{P}-\mathrm{S} / \mathrm{N}$	Cumulative Dep
0	0	0
1	$76,000 / 5=15,200$	15,200
2	15,200	30,400
3	15,200	45,600
4	15,200	60,800
5	15,200	76,000

10.3 Sum of year digits

Year
Deplyear
Cumulative Dep
(P-S)[(N-J+1)/(N(N+1)/2)]
0
1
2
0
0
$76,000(5) / 15=25,333$
20,267
15,200
4
5
10,133
5,067
25,333
45,600
60,800
70,933
76,000

10.3 Double declining balance

Year	Deplyear $2 P / N(1-2 / N)^{-1}$ OR	Cumulative Dep
	$2 / \mathrm{N}($ Cost-cumulative dep $)$	

10.3 Summary of depreciation schedules

Year
1
2
3
4
5

SL
15,200
15,200
15,200
15,200
15,200

SOYD
25,333
20,267
15,200
10,133
5,067

DDB
30,400
18,240
10,944
6,566
3,940

What is best year to switch from DDB to SL depreciation?

Straight line depreciation if DDB has been used in previous years

- Book value in year three for DDB =

■ 76,000-30,400-18,240 $=27,360$
■ SL depreciation = Book value/ remaining useful life

Switch year BV
$3 \quad$ 27,360
4
5
16,416
9,850

SL dep
$27,360 / 3=9,120<10,940$ from DDB
$8,208>6,566$
9,850

Inflation

■ Interest rate adjusted for computing present worth and other values

- Increases the value of the MARR to account for loss in value of future dollars due to inflation
- Inflation adjusted interest rate $=\mathrm{i}+\mathrm{f}+\mathrm{if}$
- $f=$ rate of inflation

13.33 Value of a 10,000 investment

■ Interest rate 10\%

- General price inflation is projected to be:
- 3% for next 5 years
- 5% for five years after that
- 8% for following five years

■ Calculate future worth of investment:

- in terms of actual dollars
- in terms of real dollars at that time
- real growth in purchasing power

13.33 Value of a 10,000 investment

■ A) Future value of actual \$
=10,000 (F/P,10\%,15)= \$41,770

■ B) Future value in real \$, constant value

$$
\begin{aligned}
& =41,770(\mathrm{P} / \mathrm{F}, 8 \%, 5)(\mathrm{P} / \mathrm{F}, 5 \%, 5)(\mathrm{P} / \mathrm{F}, 3 \%, 5) \\
& 0.68060 .78350 .8626 \\
& =19,213
\end{aligned}
$$

■ C) Real growth rate of investment

$$
=19213=10,000(1+i)^{15}=4.45 \%
$$

Alternate solution solving for real dollars

■ Use real rather than market interest rate
■ Real interest rates; $\mathrm{i}^{\prime}=(\mathrm{i}-\mathrm{f}) /(1+\mathrm{f})$

- First five years: 6.796\%
- Second five years: 4.762\%
- Third five years: 1.9608%
- Real dollar value in 15 years
- $10,000^{*}(1.06796)^{5 *}(1.04762)^{5} *(1.019608)^{5}$
- 19,318

13.30 Comparison of alternatives with inflation

■ 3 year lives with no salvage value
■ Inflation = 5\%

- Income tax rate of 25\%
- Straight line depreciation

■ MARR=7\%
■ Using rate of return analysis which is preferable?

13.30 Cash flow

Year	A	B
0	-420	-300
1	200	150
2	200	150
3	200	150

Cash flow for option A

Year	A	Actual	Dep	Tax Inc Tax	ATCF	ATCF YO\$	
0	-420	-420				-420	-420
1	200	210	140	70	-17.5	192.5	183.3
2	200	220.5	140	80.5	-20.1	200.4	181.8
3	200	231.5	140	91.5	-22.9	208.6	180.2

Cash flow for option B

Year	A	Actual	Dep	Tax Inc Tax	ATCF	ATCF YO\$	
0	-300	-300				-300	-300
1	150	157.5	100	57.5	-14.4	143.1	136.3
2	150	165.4	100	65.4	-16.4	149.0	135.1
3	150	173.6	100	73.6	-18.4	155.2	134.1

Incremental ROR analysis A-B

Year	A	B Y0\$	A-B
0	-420	-300	-120
1	183.3	136.3	47
2	181.8	135.1	46.7
3	180.2	134.1	46.1

Guessing 7\%
NPW $=-120+47$ (P/F,7\%,1) +46.7 (P/F,7\%,2) +46.1 (P/F,7\%,3)
$=2.3$, therefor ROR $>7 \%$ choose more expensive alternative

