Interest Formulas
 Chapter 4

Peter O'Grady Professor
Department of Industrial Engineering University of Iowa
© Peter OGGady, 2001

Single Payment Compound Interest
\\| $\mathbf{P}=(\mathrm{P})$ resent sum of money
\\|il $\mathbf{i}=$ (i)nterest per time period (usually years)
\\| $\boldsymbol{n}=(\mathrm{n})$ umber of time periods (usually years)
F= (F)uture sum of money that is equivalent to \mathbf{P} given an interest rate \mathbf{i} for \mathbf{n} periods
II $\mathrm{F}=\mathrm{P}(1+\mathrm{i})^{\mathrm{n}} \quad \mathrm{F}=\mathrm{P}(\mathrm{F} / \mathrm{P}, \mathrm{i}, \mathrm{n})$
- Single Payment Present Worth Formula
$\\| P=F(1+i)^{-n} \quad P=F(P / F, i, n)$

Key points

- Time value of money, $\$ 1,000$ today is not the same as $\$ 1,000$ one hundred years from now
- Equivalence provides a common language for comparing present and future sums of money
- Equivalence depends on the assumed interest rate
- Notation for single payment compound interest:

$$
F=P(F / P, i, n) \quad P=F(P / F, i, n)
$$

More Interest Formulae: Uniform Series A
Uniform amount A at end of time period Uniform series = aggregation of several present values (P) $F=A(1+i)^{n-1}+\ldots A(1+i)^{2}+A(1+i)$ Superposition principle - Lego building See p 98-99 for derivation

Uniform Series F/A A/F
$\left.\left.\begin{array}{l}\text { 1. Uniform Series Compound Amount Factor } \\ (\mathrm{F} / \mathrm{A}, \mathrm{i}, \mathrm{n}) \quad\left[(1+\mathrm{i})^{\mathrm{n}}-1\right] / \mathrm{I}=\mathrm{F} / \mathrm{A} \\ \text { 2. Uniform Series Sinking Fund Factor } \\ \text { (AFF,i,n) } \\ \\ \\ \\ \hline\end{array}\right](1+\mathrm{i})^{\mathrm{n}}-1\right]=\mathrm{A} / \mathrm{F}$

Retirement in 25 years?

Deposit \$10,000 each year for 25 years
II Interest rate is 15%, compounded annually

- At the end of 25 years how much will you have for retirement?

Uniform Series Sinking Fund A/F
Determines contribution/payment given a
future value
Inample: Periodic contribution to IRA that is
required to achieve goal
I $=\mathrm{F}(\mathrm{A} F, \mathrm{i}, \mathrm{n})$

Uniform Series Capital Recovery A/P
Determines contribution/payment given a present value

- Example: Income from an IRA that is possible given savings; loan repayment
$A=P(A / P, i, n)$

Loan Repayment

Il Car loan of $\$ 20,000$
Interest rate is 15%, compounded annually
1 What are the annual repayments?

Note: Inverse is Uniform Series Present Worth Factor P/A

Examples 4-5, 4-6

Superposition principle can be used to modify cash flow descriptions to fit standard form.

Uniform series formulas covered thus far

- Uniform series compounded

I $\mathrm{F}=\mathrm{A}(\mathrm{F} / \mathrm{A}, \mathrm{i}, \mathrm{n})$

- Uniform series sinking fund

I $A=F(A / F, i, n)$

- Uniform series capital recovery

I $A=P(A / P, i, n)$

- Uniform series present worth value
| $P=A(P / A, i, n)$

Arithmetic Gradient

1. Arithmetic Gradient Present Worth Factor (P/G,i,n) $\quad\left[(1+i)^{n}-i n-1\right] /\left[i^{2}(1+i)^{n}\right]=P / G$
2.Arithmetic Gradient Uniform Series
(A/G,i,n) $\quad\left[(1+i)^{n}-i n-1\right] /\left[i(1+i)^{n}-I\right]=A / G$

Steps to solving problems

Identify variables (F, P, A, i, n)
Draw diagram
Convert to workable form
Identify appropriate formula
Perform calculations
Verify against rough estimates

Arithmetic Gradient

graduated payments (G)
\| $A=G(A / G, i, n) \quad P=G(P / G, i, n)$

- Example: Increasing maintenance costs with aging equipment
| Note: G=0 at time =1

Geometric Gradient

Determines uniform payments (A) given graduated payments (G) that increase at a constant percentage
$\mathrm{P}=\mathrm{A}(\mathrm{F} / \mathrm{A}, \mathrm{g}, \mathrm{i}, \mathrm{n})$
$\mathrm{g}=$ percent increase in A
I. Two formulas, one for $\mathrm{i}=\mathrm{g}$ and $\mathrm{i}<>\mathrm{g}$
I. Unlike arithmetic A starts at time 1

Example: IRA contributions increase with income

> Nominal and effective interest
> Nominal interest rate= Interest rate without consideration of compounding
> Effective interest rate= Nominal interest rate adjusted for compounding
> Nominal=Effective IF compounding period equals period of effective interest rate
> Conversion to effective interest rate provides a basis to make comparisons

Nominal and effective interest rates

Effective interest rate, i_{p}, (period of compounding=period of interest) is used in formulas:
$\mathrm{i}=\mathrm{i}_{\mathrm{p}}=\left(1+\mathrm{i}_{5}\right)^{\mathrm{m}}-1$
$i=i_{p}=\left(1+r_{p} / m\right)^{m}-1$
$\mathrm{i}_{\mathrm{s}}=$ interest per subperiod
$r_{P}=$ nominal interest per period P
$m=$ number of subperiods in period P
Nominal interest rate, $r_{p}=m \times i_{s}$
Continuous compounding: $i_{a}=e^{r}-1$
$\mathrm{F}=\mathrm{P}\left(1+\mathrm{i}_{\mathrm{a}}\right)^{\mathrm{n}}=\mathrm{P}^{*} \mathrm{e}^{\mathrm{m}}$
Chapter 4-21

Nominal and effective interest rates
II $\mathrm{i}=$ Effective interest rate per interest period
$\| r=$ Nominal interest rate per period
lian $i_{a}=$ Effective interest rate per year (annum)
$\| i_{s}=$ Effective interest rate per sub period
$m=$ Number of compounding subperiods in the period used to define the nominal rate "r"

Nominal interest rate of 12% compounded monthly

- What is the effective interest rate per month?

What is the nominal interest rate per month?
What is the effective interest rate per year?

Does (F/A, 12\%, 30) = (F/A, 1\%, 360)?
Chapter 4-22

Table 4-3 NOMINAL AND EFFECTIVE INTEREST RATES					
Nominal					
interest rate per year	Effective interest rate per year, ï, when nominal rate is compounded				
r	Yearly	Semiannually	Monthlv	Dailv	Continu ously
1\%	1.0000\%	1.0025\%	1.0046\%	1.0050\%	1.0050\%
2	2.0000	2.0100	2.0184	2.0201	2.0201
3	3.0000	3.0225	3.0416	3.0453	3.0455
4	4.0000	4.0400	4.0742	4.0809	4.0811
5	5.0000	5.0625	5.1162	5.1268	5.1271
6	6.0000	6.0900	6.1678	6.1831	6.1837
8	8 8.0nกn	8.1600	8.3000	8.3278	8.3287
10	10.000	10.2500	10.4713	10.5156	10.5171
15	15.000	15.5625	16.0755	16.1798	16.1834
25	25.000	26.5625	28.0732	28.3916	28.4025
					hapter 4-23

4-63 A student bought a guitar for $\$ 75$ and agreed to pay $\$ 85$ after 6 months. Nominal interest rate? Effective annual interest rate?

```
General problem-solving suggestions
| Draw the cash flow diagram
| Calculate a rough guess
    | Use a crude model: ignore interest, ignore compounding
|| Doubling rule: an amount doubles every 70/i\% years
- Track units
\| Effective interest rate must have the same units for period of compounding as for period of interest
\| " \(n\) " must match " i " in tables
```

Overview of Chapter 4: Translation to common units

- Convert between values in future and present
- Convert between single values and series of values
- Convert between nominal interest rate and interest rate that considers effect of compounding (effective)
- Effective interest rate (period of compounding=period of interest) is used in formulas: $i=\left(1+i_{s}\right)^{m}-1$
($\mathrm{i}_{\mathrm{s}}=$ interest per subperiod)
($\mathrm{m}=$ number of subperiods)

