
1

Midterm Exam Statistics
• Mean Score = 62
• Median Score = 62
• High Score = 86
• Distribution

80s = 5
70s = 3
60s = 11
50s = 9
<50 = 8

Note: A solution will be posted on the class web site.

Final Project
• Conducted during the last three weeks of class
• Assignment: Design and implement an

embedded application of your choosing
• Constraint: Your system must include at least

one of the following:
– Use of a PIC feature not used in labs—e.g. CCP unit
– Use of a protocol not used in labs—e.g. I2C
– Use of a peripheral chip not used in lab

• Scope/complexity of your application must be at
least comparable to that of lab 5 and lab 6.

• Stretch yourselves--more points will be awarded
to more ambitious projects

• Project proposals will be due on Tues. April 10

Designing an Embedded
Application—Lab 5 as an

Example

55:036
Embedded Systems and Systems

Software

Lab 5—Major Elements

• Read User-IDs from Mag Stripe reader
• Read PINs from Keypad
• Compare the entered USER-IDs and PINs

to values pre-stored in on-board EEPROM
• Display text on LCD
• Check for pushbutton presses
• Update stored PINs (in EEPROM)

2

Where Do We Start?

• Central issues: use of timers, other
devices, interrupts

• Usually a good idea to consider timing
constraints first

• This will dictate the overall structure of the
application

Lab 5—Timing Constraints

• Mag Stripe Reader

Nominal data rate: 1.5 msec/bit (= 667 Hz)

Data must be sampled within approx. 0.75 msec. after leading edge
of strobe

• Keypad:
– Switch debounce requires sampling keypad at

approx. 10 msec. intervals
– Variation of a few msec. in either direction can

be tolerated
• Pushbutton switch:

– Debounce shouldn’t be an issue since we are
just checking for evidence a button push.

– Only interested in button pushes that occur
within 5 seconds of authorization

Lab 5—Timing Constraints

• LCD
– Writing a character to the LCD requires

approx. 45 microseconds
– Need to insure that programmed delays don’t

interfere with servicing of other devices
• e.g. Writing 16 characters to the LCD requires

approx. 0.7 milliseconds

Lab 5—Timing Constraints

3

So, How Should Lab 5 be Structured?
• Main Program Loop:

– Authorize Users
• Check entered User-ID/PIN against values stored in

EEPROM
– Handle PIN updates
– service LCD

• Mag. Stripe Reader
– Service via external interrupt
– Should be OK to trigger interrupts on leading edge of

strobe.
• KeyPad

– Service via periodic timer interrupt
– 10 msec. period should work OK

Interrupt Priorities
• It should be OK to configure both external

interrupts and timer interrupts as low priority.
• timing constraints for both devices are fairly

flexible
• No particular advantage to giving one priority

over the other
• Both ISRs will be short
• Shouldn’t interfere too much with each other
• Will need to use polling to determine which

interrupt has occurred
• Alternatively, can assign one device high priority

and the other low priority.

Lab 5 Program Structure

Main program loop
(services LCD,

implements logic for
validating User IDs and

PINs to authorize access,
and changing

PINs)

Timer ISR
(for reading

Keypad)

External Interrupt ISR
(for servicing

mag-stripe reader)

Designing the Mag-Stripe Reader
ISR

• This ISR will be invoked at leading-edge of
each strobe cycle (approx the middle of
each data bit period) from the mag-stripe
reader

• ISR needs to sample the data line from the
mag-stripe reader and assemble and store
digits read from track 2

4

Track 2 Format
Odd
Parity b3 b2 b1 b0 Meaning of Group

Characters are recorded LSB first with parity at the end
--i.e. right to left in this diagram

Track 2 data
characters
are 4 bits +
parity.
(Must be
numeric:
0x0 – 0x9)

• General Idea
– Identify the beginning of the “start sentinel”
– Assemble next four bits into a digit and store

in an array
– read the parity bit and discard (or verify

correct parity)
– Continue to assemble and store digits as

above until the 10-digit User-ID, stop sentinel,
and LRC character have been read

Designing the Mag-Stripe Reader
ISR

• General Idea
– Identify the beginning of the “start sentinel”
– Assemble next four bits into a digit and store

in an array
– read the parity bit and discard (or verify

correct parity
– Continue to assemble and store digits as

above until the 10-digit User-ID, stop sentinel,
and LRC character have been read

Designing the Mag-Stripe Reader
ISR

But, remember, this behavior takes place over many invocations of the
ISR—the ISR is invoked once for each bit-time on the card

A Useful Structuring Tool—Finite
State Machine

Waiting
for
Start
Sentinel

First (l.o.)
bit of char
read

data = 0
(high)

data = 1
(low)

Second
bit of char
readdata = x

Third
bit of char
read

data = x

Fourth (h.o.)
bit of char
read data = x

Parity
bit read

data = x

last char
(LRC) has
been
read

data = x;
last char was not LRC

Note: Structure the Mag-reader ISR as a FSM—one state transition per invocation

S0 S1 S2

S3S4S5

5

Implementing the FSM
#define S0 0
#define S1 1
#define S2 2
#define S3 3
#define S4 4
#define S5 5
char next_state = S0;
char current_bit;
char next_bit;
char ch;
char User_ID[12];

Mag_Stripe_ISR() {
current-bit = next_bit
next_bit = /* data value read from Mag stripe rdr */
switch (next_state) {

S0:
if (next_bit == 0) next_ state = S0;
else next_state = S1;
break;

S1:
/* do S1 stuff here */
next_state = S2;
break;

S2:
/* do S2 stuff here */

next_state = S3;
break;

S3:
/* do S3 stuff here */
next_state=S4;
break;

S4:
/* do S4 stuff here */
next_state=S5;
break;

S5:
/* do S5 stuff here */
if (/* 12 chars have been read */)

next_state = S0;
else next_state = S1;

} // end switch
} // end of ISR

Possible Lab 5 Program
Structure

Main program

(services LCD,
implements logic

for validating
User IDs and

PINs,
authorizing
access and
changing

PINs)

Timer ISR
(for reading
Keypad)

External
Interrupt

ISR
(for

servicing
mag-stripe

reader)

Possible Lab 5 Program
Structure(Ignoring RS-232 I/O)

Main program

(services LCD,
implements logic

for validating
User IDs and

PINs,
authorizing
access and
changing

PINs)

Timer ISR
(for reading

Keypad)

External
Interrupt

ISR
(for

servicing
mag-stripe

reader)

char Card_Swiped

char ID[10]

ISR sets Card_Swiped to indicate that a complete User-ID has been read from a
card. The User-ID is placed by the ISR into the array ID

Possible Lab 5 Program
Structure
Main program

(services LCD,
implements logic

for validating
User IDs and

PINs,
authorizing
access and
changing

PINs)

Timer ISR
(for reading

Keypad)

External
Interrupt

ISR
(for

servicing
mag-stripe

reader)

char PIN_Entered

char PIN[4]

char Card_Swiped

char ID[10]

ISR sets PIN_Entered to indicate that a
complete PIN has been read from the keypad.
The PIN is placed by the ISR into the array PIN

6

Main Program as a FSM

A_IDLE

Main Program as a FSM
(Ignoring PIN Change Logic)

A_IDLE

CHECK_ID

!(Card_Swiped)

Card_Swiped

Main Program as a FSM
(Ignoring PIN Change Logic)

A_IDLE

CHECK_ID

!(Card_Swiped)

Card_Swiped
GET_PIN

invalid ID

valid ID

Main Program as a FSM
(Ignoring PIN Change Logic)

A_IDLE

CHECK_ID

!(Card_Swiped)

Card_Swiped
GET_PIN

invalid ID

valid ID

CHECK_PIN

!(PIN_Entered)

PIN_Entered

7

Main Program as a FSM
(Ignoring PIN Change Logic)

A_IDLE

CHECK_ID

!(Card_Swiped)

Card_Swiped
GET_PIN

invalid ID

valid ID

CHECK_PIN

!(PIN_Entered)

PIN_Entered

AUTHORIZE valid PIN

bad PIN

< five seconds

five seconds
elapsed

Pseudo-Code for Main FSM states
main () {
//Initialization Goes Here
while(1)
switch (Auth_Next_State) {

A_IDLE:
/* A_IDLE State Stuff Goes Here */ break;

CHECK_ID:
/* CHECK_ID State Stuff Goes Here */ break;

GET_PIN:
/* GET_PIN State Stuff Goes Here */ break;

CHECK_PIN:
/* CHECK_PIN State Stuff Goes Here */ break;

AUTHORIZE:
/* AUTHORIZE State Stuff Goes Here */

}

Initialization:
Display “Swipe Card” on LCD;
Turn off Authorization LED;
Card_Swiped = false;
PIN_Entered = false;
Auth_Next_State = A_IDLE;

Pseudo-Code for Main FSM states Pseudo-Code for Main FSM states

IDLE:
if (Card_Swiped)
Auth_Next_State = CHECK_ID;

else Auth_Next_State = A_IDLE;
break;

8

CHECK_ID:
Reset Card_Swiped;
If (ID matches a stored User-ID) {

Stored_PIN = PIN of matching stored User-ID;
Display “Enter PIN” on LCD;
Auth_Next_State = GET_PIN;
}

else {
Display “Invalid ID” on LCD
Auth_Next_State=A_IDLE;
}

break;

Pseudo-Code for Main FSM states

GET_PIN:
if (PIN_Entered)

Auth_Next_State = CHECK_PIN;
else

Auth_Next_State = GET_PIN;
break;

Pseudo-Code for Main FSM states

CHECK_PIN:
If (PIN == Stored_PIN) {

Turn on Authorization LED;
Display “ Door is Unlocked” on LCD;
Auth_Next_State = Authorize;
}

else {
Display “Re-enter PIN” on LCD;
Auth_Next_State = GET_PIN;
}

break;

Pseudo-Code for Main FSM states
AUTHORIZE:
If (less than five seconds have elapsed since entering

this state)
Auth_Next_State = AUTHORIZE;

else {
Turn off authorization LED;
Display “Swipe Card” on LCD;
Auth_Next_State = A_IDLE;
}

break:

Pseudo-Code for Main FSM states

9

Discussion

• You will need to add in the “Change PIN”
functionality

• This will require extensions to the Main
FSM

• Need to carefully review timing issues to
make sure that there is no interference
among various parts of the system.

