
1

Serial Interconnect Buses—
I2C (SMB) and SPI

55:036
Embedded Systems and Systems

Software

Purpose of Serial Interconnect
Buses

• Provide low-cost—i.e low wire/pin count—
connection between IC devices

• There are lots of serial bus “standards”
– I2C
– SMB
– SPI
– Microwire
– Maxim 3-wire
– Maxim/Dallas 1-wire
– etc.

Purpose of Serial Interconnect
Buses

• Provide low-cost—i.e low wire/pin count—
connection between IC devices

• There are lots of serial bus “standards”
– I2C
– SMB
– SPI
– Microwire
– Maxim 3-wire
– Maxim/Dallas 1-wire
– etc.

We’ll focus on these.

Serial Peripheral Interface (SPI)

• Originally developed by Motorola
• Synchronous, serial protocol

– Data timing is controlled by an explicit clock
signal (SCK)

• Master-slave
– Master device controls the clock

• Bi-directional data exchange
– data clocked into and out-of device at same

time

2

SPI signals

• SS (CS) (Slave Select, Chip Select)
– When SS is low the slave is enabled

• SCK (Serial Clock)
– Controls the sending and reading of data

• SD0 (Serial Data Out)
– Carries data OUT of the device

• SDI (Serial Data In)
– Carries data INTO the device

SPI Data Loop

SSPSR

SSPBUF

SSPSR

SSPBUF

Control Control

SCK SCK

SS

SDO

SDO

SDI

SDI

Master Slave

SPI Data Loop

SSPSR

SSPBUF

SSPSR

SSPBUF

Control Control

SCK SCK

SS

SDO

SDO

SDI

SDI

Master Slave

Internal Shift Register: Loaded by
SPI data or from SSPBUF

SPI Data Loop

SSPSR

SSPBUF

SSPSR

SSPBUF

Control Control

SCK SCK

SS

SDO

SDO

SDI

SDI

Master Slave

Serial Buffer: This is the register read and
written by your program

3

SPI Data Loop

SSPSR

SSPBUF

SSPSR

SSPBUF

Control Control

SCK SCK

SS

SDO

SDO

SDI

SDI

Master Slave
Master generates the clock the controls the data transfer

SPI Data Loop

SSPSR

SSPBUF

SSPSR

SSPBUF

Control Control

SCK SCK

SS

SDO

SDO

SDI

SDI

Master Slave
Master controls which slave is selected by asserting the
slave’s SS

internal Shift Reg.

SSPBUF

Control SCK

SDO

SDI

PIC 18F452 SPI Module

3
… …

SSPIF
(flag)

RC3/SCK

RC5/SD0

RC4/SDI

PIR1

internal Shift Reg.

SSPBUF

Control SCK

SDO

SDI

PIC 18F452 SPI Module

3
… …

SSPIF
(flag)

RC3/SCK

RC5/SD0

RC4/SDIActually
the SPI
Interface is
part of a
multifunctional
PIC module
called MSSP
(Master
Synchronous
Serial Port)
that supports
both SPI
and I2C

PIR1

4

internal Shift Reg.

SSPBUF

Control SCK

SDO

SDI

PIC 18F452 SPI Module

3
… …

SSPIF
(flag)

RC3/SCK

RC5/SD0

RC4/SDI

A write to SSPBUF
initiates both SDO and
SDI transfers

internal Shift Reg.

SSPBUF

Control SCK

SDO

SDI

PIC 18F452 SPI Module

3
… …

SSPIF
(flag)

RC3/SCK

RC5/SD0

RC4/SDI

A write to SSPBUF
initiates both SDO and
SDI transfers

At completion of transfer
SSPIF is set (must be
cleared prior to next
transfer). SSPBUF
now holds SDI input

SPI Timing SPI Modes

5

SPI Modes

Mode selection is
controlled by three
bits:
CKP (Clock Polarity)
CKE (Clock edge select)
SMP (SPI sample time)

Determining the right
mode to use for a
given device can be
tricky (see section 15.3
in the text)

Connecting Multiple SPI Devices

SS SDO SDI SCK SS SDO SDI SCKSDO SDI SCK

PIC18F452 (Master) SPI Slave 1
…

SPI Slave K

…

(RC5)(RC4)(RC3)
arbitrary
pins

Connecting Multiple SPI Devices

SS SDO SDI SCK SS SDO SDI SCKSDO SDI SCK

PIC18F452 (Master) SPI Slave 1
…

SPI Slave K

…

(RC5)(RC4)(RC3)
arbitrary
pins

Slave selection is NOT handled by the MSSP
Unit

Connecting Multiple SPI Devices

SS SDO SDI SCK SS SDO SDI SCKSDO SDI SCK

PIC18F452 (Master) SPI Slave 1
…

SPI Slave K

…

(RC5)(RC4)(RC3)
arbitrary
pins

Note: On the QwikFlash Boards
the MAX522 DAC is permanently
connected to the SPI interface
(RC0 is used for SS)

Pins RC3-RC5
(SCK, SDI, SDO)
are also brought
out to the H2
expansion header
to allow connection
of additional SPI
devices

6

Using SPI with C18 C
• Setting up the SPI Unit

Function: Initialize the SSP module.
Include: spi.h
Prototype: void OpenSPI(unsigned char sync_mode,

unsigned char bus_mode,
unsigned char smp_phase);

Setting up the SPI Unit (continued)

Arguments: sync_mode
One of the following values, defined in spi.h:
SPI_FOSC_4 SPI Master mode, clock = FOSC/4
SPI_FOSC_16 SPI Master mode, clock = FOSC/16
SPI_FOSC_64 SPI Master mode, clock = FOSC/64
SPI_FOSC_TMR2 SPI Master mode, clock = TMR2 output/2
SLV_SSON SPI Slave mode, /SS pin control enabled
SLV_SSOFF SPI Slave mode, /SS pin control disabled
bus_mode
One of the following values, defined in spi.h:
MODE_00 Setting for SPI bus Mode 0,0
MODE_01 Setting for SPI bus Mode 0,1
MODE_10 Setting for SPI bus Mode 1,0
MODE_11 Setting for SPI bus Mode 1,1

Using SPI with C18 C

Using SPI with C18 C

smp_phase
One of the following values, defined in spi.h:
SMPEND Input data sample at end of data out
SMPMID Input data sample at middle of data out

Remarks: This function sets up the SSP module for use with a SPI
bus device.

File Name: spi_open.c

Code Example: OpenSPI(SPI_FOSC_16, MODE_00, SMPEND);

Setting up the SPI Unit (continued)

Using SPI with C18 C
WriteSPI
putcSPI
Function: Write a byte to the SPI bus.
Include: spi.h
Prototype: unsigned char WriteSPI(unsigned char data_out);

unsigned char putcSPI(unsigned char data_out);

Arguments: data_out Value to be written to the SPI bus.
Remarks: This function writes a single data byte out and then checks for a write
collision. putcSPI is defined to be WriteSPI in spi.h.

Return Value: 0 if no write collision occurred
-1 if a write collision occurred

File Name: spi_writ.c
#define in spi.h

Code Example: WriteSPI(‘a’);

Writing to the SPI bus:

7

Using SPI with C18 C

ReadSPI
getcSPI
Function: Read a byte from the SPI bus.
Include: spi.h
Prototype: unsigned char ReadSPI(void);

unsigned char getcSPI(void);
Remarks: This function initiates a SPIx bus cycle for the acquisition of a byte of
data. getcSPI is defined to be ReadSPI in spi.h.

Return Value: This function returns a byte of data read during a SPI read cycle.
File Name: spi_read.c

#define in spi.h

Code Example: char x;
x = ReadSPI();

Reading from the SPI bus:
Another Serial Bus

• I2C (Inter-IC)
– Two-wire serial bus protocol developed by Philips

Semiconductors nearly 20 years ago
– Enables peripheral ICs to communicate using simple

communication hardware
– Data transfer rates up to 100 kbits/s and 7-bit

addressing possible in normal mode
– 3.4 Mbits/s and 10-bit addressing in fast-mode
– Common devices capable of interfacing to I2C bus:

• EPROMS, Flash, and some RAM memory, real-time clocks,
watchdog timers, and microcontrollers

I2C bus structure
SCL
SDA

Micro-
controller
(master)

EEPROM
(servant)

Temp.
Sensor
(servant)

LCD-
controller
(servant) < 400 pF

Addr=0x01 Addr=0x02 Addr=0x03

D
C

S
T

A
R
T

A
6

A
5

A
0

R
/
w

A
C
K

D
8

D
7

D
0

A
C
K

S
T

O
P

From
Servant

From
receiver

Typical read/write cycle

SDA

SCL

SDA

SCL

SDA

SCL

SDA

SCL

Start condition Sending 0 Sending 1 Stop condition

I2C bus structure
SCL
SDA

Micro-
controller
(master)

EEPROM
(servant)

Temp.
Sensor
(servant)

LCD-
controller
(servant) < 400 pF

Addr=0x01 Addr=0x02 Addr=0x03

D
C

S
T

A
R
T

A
6

A
5

A
0

R
/
w

A
C
K

D
8

D
7

D
0

A
C
K

S
T

O
P

From
Servant

From
receiver

Typical read/write cycle

SDA

SCL

SDA

SCL

SDA

SCL

SDA

SCL

Start condition Sending 0 Sending 1 Stop condition

PIC18f452 uses
pins RC3/RC4.
Drivers are open-
drain so pullup
resisters are needed
See section 17.3
in the text.

start
condition

7-bit address R/W 8-bit data

