CS122A: Embedded System Design

4/24/2007

A Simple Introduction to
Embedded Control Systems
(PID Control)

Acknowledgements

« The material in this lecture is adapted

from:

—F. Vahid and T. Givargis, Embedded System
Designh—A Unified Hardware/Software
Introduction, John Wiley & Sons, 2002

(Chapter 9)

—T. Wescott, “PID Without a PhD”

« http://mww.embedded.com/2000/0010/0010feat3.htm

Control System

Control physical system’s output

— By setting physical system’s input
Tracking i e eisd
— Cruise control it <] 4k I |
— Thermostat cont e
— Disk drive control

— Aircraft altitude control
— Chemical processes
Difficulty due to

— Disturbance: wind, road, tire, brake; opening/closing door...
— Human interface: feel good, feel right...

Tracking
g
% -é reference input
= aric m oulput
ifL
L] - »

CS122A: Embedded System Design

4/24/2007

Open-Loop Control Systems

* Plant
— Physical system to be controlled
« Car, plane, disk, heater,...
« Actuator
— Device to control the plant
« Throttle, wing flap, disk motor,...
« Controller
— Designed product to control the plant

Open-Loop Control Systems

¢ Output
— The aspect of the physical system we are interested in
« Speed, disk location, temperature
« Reference
— The value we want to see at output
+ Desired speed, desired location, desired temperature
« Disturbance
— Uncontrollable input to the plant imposed by environment
« Wind, bumping the disk drive, door opening

Other Characteristics of open
loop
* Feed-forward control
« Delay in actual change of the output
< Controller doesn’t know how well thing goes
e Simple
« Best use for predictable syst

Closed Loop Control Systems

* Sensor
— Measure the plant output
« Error detector
— Detect Error
« Feedback control systems
¢ Minimize tracking error

CS122A: Embedded System Design

4/24/2007

Designing Open Loop Control
System

» Develop a model of the plant

« Develop a controller

* Analyze the controller

e Consider Disturbance

« Determine Performance

» Example: Open Loop Cruise Control System

Model of the Plant

¢ May not be necessary
— Can be done through experimenting and tuning
* But,
— Can make it easier to design
— May be useful for deriving the controller
« Example: throttle that goes from 0 to 45 degree
— On flat surface at 50 mph, open the throttle to 40 degrees
— Wait 1 “time unit”
— Measure the speed, let's say 55 mph

— Then the following equation satisfies the above scenario
o Vi =0.7*v+0.5%u,
« 55=0.7*50+0.5*40

— IF the equation holds for all other scenarios
* Then we have a model of the plant

10

Designing the Controller

* Assuming we want to use a simple linear function
— usF(r)=P*r,
— r,is the desired speed

¢ Linear proportional controller

* V,=0.7*v+0.5*u, = 0.7*v+0.5P*r,

* Letv,,=v, at steady state = vy

o Vg =0.7*v +0.5P*r,

» At steady state, we want v =r;

* P=0.6
- le.u=06"r

Analyzing the Controller

* Let vy=20mph, r,=50mph

* V,,;=0.7*v,+0.5(0.6)*r, Fime® v |
=0.7*v,+0.3*50= 0.7*v+15 29.00 |
! . A t 2 35.30
¢ Throttle position is 0.6*50=30 E ig;a [
degrees 5 [4496
[46.47
7 4753 |
8 48.27
] 48.79
10 4915 |
11 49.41 |
12 49.58

12

CS122A: Embedded System Design 4/24/2007

Considering the Disturbance Determining Performance
e Assume road Time® | w | wilorw=+5 | vlorw=-5 * Vi=0.77i0.5P 5w
0 30.00 20.00 20.00 * Vv;=0.7*vg+0.5P*ry-w,
gl’ade can affect 1 29.00 24.00 34.00 . VZZO.7*(0.7*VU+0.5P*TO-W0) +0.5P*I’U-WU
the speed § gg ? gggg 43.80 =0.7*0.7*vy+(0.7+1.0)*0.5P*r-(0.7+1.0)w,
e = « VE0.7%VgH(0.751+0.742+... +0.7+1.0)(0.5P*ro-Wy)
— From -5mph to +5 5 44,96 31.08 56.62 « Coefficient of v, determines rate of decay of v,
mph] 46.47 3176 61.18 — Bigger coefficient will result in slower response
N . ; :; :’: 32.24 62.82 — >1or <-1, v, will grow without bound
— Vi41=0.7*v+10 < ot 25 g::?: — <0, v, will oscillate
— Vyyy=0.7*v+20 10 491 32.06 65.35
1 294 33.07 65.74
12 49.58 33.15 66.02
e
13 ‘ T 14

Designing Closed Loop Control

Stability

* U =P(revy)

* Vi, =0.7v+0.5u-w, = 0.7v+0.5P*(r-v,)-w,
=(0.7-0.5P)*v+0.5P*r-w,

* V,=(0.7-0.5P)%*v+((0.7-0.5P)"1+(0.7-0.5P)¢2+...+0.7
0.5P+1.0)(0.5P*ry-wg)

« Stability constraint (i.e. convergence) requires:

|0.7-0.5P|<1 m= o
-1<0.7-0.5P<1 o D AT el s L
-0.6<P<3.4 ¥ [([!
To avoid oscillation: | ==y __'
(0.7-5P)>=0 L g oo |

16

P<=1.4

CS122A: Embedded System Design

4/24/2007

Reducing effect of v,

s u=P*(revy)
* Viy = 0.7v+0.5u-w, = 0.7v+0.5P*(r-v)-w
=(0.7-0.5P)*v+0.5P*r-w;,
* vi=(0.7-0.5P)%*v,+((0.7-0.5P)*1+(0.7-0.5P)%2+...+0.7-
0.5P+1.0)(0.5P*r,-w,)

¢ To reduce the effect of initial condition

— 0.7-0.5P as small as possible
-P=14 - i

17

Avoid Oscillation

o U =P*(rrvy)
* V= 0.7v+0.5u-w, = 0.7v+0.5P*(r-v))-w
=(0.7-0.5P)*v+0.5P*r-w,
+ vt=(0.7-0.5P)™*v+((0.7-0.5P)+1+(0.7-0.5P)"2+...+0.7-
0.5P+1.0)(0.5P*ry-wy)
+ To avoid oscillation
0.7-0.5P >=0
P<=1.4

Perfect Tracking

W =PH(ev)

* Vg = 0.7v+0.5u-w, = 0.7v,+0.5P*(r-vy)-w

=(0.7-0.5P)*v+0.5P*r-w,

* V=(0.7-0.5P)*v+0.5P*r-w,
(1-0.7+0.5P)v¢s=0.5P*ry-w,
Vss=(0.5P/(0.3+0.5P)) * r, - (1.0/(0.3+0.5P)) * w,

» To make v as close to ry as possible

P should be as large as possible

Closed-Loop Design

¢ U =P (revy)
* Finally, setting P=3.3
— Stable, track well, some oscillation
u =33 *(r-vy)

20

CS122A: Embedded System Design

4/24/2007

Analyze the controller

* V=20 mph, r;=50 mph, w=0 i
* Viyy = 0.7v+0.5P*(r-vy)-w
= 0.7v,+0.5*3.3*(50-v,)
o U =P*(r-vy)
=3.3*(50-v)

» But valid u, ranges from 0-45
e Controller saturates

21

Analyze the controller

V(=20 mph, r,=50 mph, w=0 " R
Viq = 0.7v+0.5*u, —

u, = 3.3 *(50-vy)
— Saturate at 0, 45
Oscillation! [
— “feel bad” 10

Analyze the controller

« SetP=1.0to
void oscillation

— Terrible SS
performance

Speed (mph)

Analyzing the Controller

60
50 4
40 4 N e e o e]
30 fp—h——h—h—k——k—d—h—h——A - h—h—A k&
20 —a—p=33
104 | —&—p=1.0
o4 R
0 1 2 3 4 5 6 7 B8 9 10 45 46 47 48 49 50
Time (sec)

24

CS122A: Embedded System Design 4/24/2007

Minimize the effect of
disturbance General Control System
_ « Objective
3 = ime: ¥ L] Yy . .
Vi . ‘ﬁ 50 00 . — Causing output to track a reference even in the
0.7v+0.5*3.3%(r-] 4o - B presence of
Vp-w 3 e 1L 2o « Measurement noise
— w=-5or +5 ; . 355 « Model error
: 5 3] « Disturbances
. 39.74 e - 20 + Metrics
— Close to 42.31 m 2 = 100 351 — Stability
— Better than P P o o + Output remains bounded
"3 X — 1} a— — Performance
- 66 o 0T 1% sy e « How well an output tracks the reference
e Cost . w’ﬂ ”'ss «'m - — Disturbance rejection
— SSerror E— ' ' ' — Robustness
— oscillation 25 « Ability to tolerate modeling error of the plant 26
Performance (generally Plant modeling is difficult
- ° 1
Speaklng) May n'eed to be done flrst '
Rise i ¢ Plant is usually on continuous time
'Sﬁr:::iakes Mp — Not discrete time
- from 10% to] - - - A N L « E.g. car speed continuously react to throttle position, not at
90% Z T discrete interval
« Peak time = — Sampling perio:j mgst lbe chqs?n carefglly
« Overshoot : ;I';) rz:]l;e" seL;roeu nr:)thmg interesting” happen in between
- Percentage by WAt L 9 .
which Peak =L T ¢ Plant is usually non-linear
S;ﬁjeeed final — E.g. shock absorber response may need to be 8t
. Settling time order differential
— Time it takes to * lterative development of the plant model and
reach 1% of final controller
value — Have a plant model that is “good enough”
27 28

CS122A: Embedded System Design

4/24/2007

Controller Design: P

« Proportional controller
— A controller that multiplies the tracking error by a constant
© U =P ()
— Closed loop model with a linear plant
* E.g. Vyy; = (0.7-0.5P)*v,+0.5P*r-w,
« P affects
— Transient response :
« Stability, oscillation "= }a T ===l
— Steady state tracking ¥ =
* As large as possible
— Disturbance rejection
* As large as possible

29

Controller Design: PD

¢ Proportional and Derivative control

e U =P*(rev) + D * ((rev)-(rey-Ven)) = P * e+ D * (ereyy)
¢ Consider the size of error over time
* Intuitively

— Want to “push” more if the error is not reducing fast
enough

— Want to “push” less if the error is reducing really fast

sysim ouipe

JEvstem outpat

(a) time) 30

PD Controller
* Need to keep track of error derivative
e E.g. Cruise controller example
— Viyq = 0.7v+0.5u-w,
— Letu,=P*e +D*(ere..) e~rVv,
— Vi41=0.7V+0.5*(P*(r-v) +D*((r-V)-(ria-Ve1)))-W,
= V;,1=(0.7-0.5*(P+D))*v,+0.5D*v,,+0.5*(P+D)*r-0.5D*r,
1™W,

— Assume reference input and disturbance are
constant, the steady-state speed is
* V=(0.5P/(1-0.7+0.5P)) * r
« Does not depend on D!!!

« P can be set for best tracking and disturbance
control

* Then D set to control oscillation/overshoot/rate
of convergence a

PD Control Example

'g 400
f-%' 300
200 1

100

0.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Sampling Instant

32

CS122A: Embedded System Design

4/24/2007

Pl Control

« Proportional plus integral control
— u=P*etl*(eyte,+...+e)
e Sum up error over time
— Ensure reaching desired output, eventually
— Vg Will not be reached until e, ;=0
* Use P to control disturbance
« Use I to ensure steady state convergence and
convergence rate

PID Controller

« Combine Proportional, integral, and derivative control
— u=P*etl*(e,te,+...+e)+D*(ere,)
* Available off-the shelf

LTS
a0 .
400
g:ﬂn 1
e e ST

35

= - 100 | —B—PeiS 250025
m: 0 5 | =t P 3o De035
& ’ s T —
- w,ﬁwﬂ'—‘—-—-—-—-—-ﬁ—oﬂ—-—- 23 4 5 & T B 5 W1 o213 14 18 18
03 — L”’) Samping Wnstant
“ L] 3 LI) LN) lu. 3 s o] L] s"r LI BN . " 34
B s L] g ey
Block Diagram View of PID .
Software Coding
Controller
« Main function loops forever, during each iteration
— Read plant output sensor
'W“T « May require A2D
| — Read current desired reference input
— | - Call PidUpdate, to determine actuator value
— commad — (G wrer—s] 1 i—gj@—;—-l?,ﬁéaﬂfw"m—'— - Set actuator value
) e B o + May require D2A
‘B3
i or_val error_currents
(. P
: alve = SensorGecval
Software Hardware ReferenceGet'
36

CS122A: Embedded System Design

4/24/2007

Software Coding (continued)

¢ Pgain, Dgain, Igain are constants
¢ sensor_value_previous
— For D control
e error_sum
— For | control
typedef struct PID DATA |
double Pgain, Dgain, Igain;

double sensor_value previous; // find the derivative
double error_sum; // cumulative error

37

Computation

¢ u=P*etI*(e te +...+e)+D*(ee.,)

double PidUpdate (PID_DATA *pid data, double sensor_value,
double reference value)
i
double Pterm, Iterm, Dterms
double error, difference:

errer = reference_value - sensor_value;

Pterm = pid data-»>Pgain * error: /* proportional term*/

pid_data-»er. sum 4= error; /* current + cumulative*/

// the integral term

Iterm = pid data->Igain * pid_data->error_sum;

difference = pid_data->senser_value prewvious -
sensor_value; -

/{ update for next iteration

pid_data->sensor_value_previous = sensor_value;

/4 the derivative term

Dterm = pid data->Dgain * difference;
return (Pterm + Iterm + Dterm);

38

PID tuning

 Analytically deriving P, I, D may not be possible
— E.g. plant not is not available, or to costly to obtain

« Ad hoc method for getting “reasonable” P, |, D
— Start with a small P, I=D=0

— Increase D, until seeing oscillation
* Reduce D a bit

— Increase P, until seeing oscillation
* Reduce D a bit

— Increase I, until seeing oscillation
« |terate until can change anything without
excessive oscillation 39

Excellent Reference for PID
Control

» PID Without a PhD by Tim Wescott

* http://wvww.embedded.com/2000/0010/001
Ofeat3.htm

40

10

CS122A: Embedded System Design

4/24/2007

Practical Issues with Computer-
Based Control
« Quantization
* Overflow
« Aliasing
« Computation Delay

41

Quantization & Overflow

« Quantization
— E.g. can't store 0.36 as 4-bit fractional number
— Can only store 0.75, 0.59, 0.25, 0.00, -0.25, -050,-0.75, -1.00
— Choose 0.25
« Results in quantization error of 0.11
« Sources of quantization error
— Operations, e.g. 0.50*0.25=0.125
« Can use more bits until input/output to the environment/memory
— A2D converters

« Overflow
— Can't store 0.75+0.50 = 1.25 as 4-bit fractional number

« Solutions:
— Use fix-point representation/operations carefully
« Time-consuming
— Use floating-point co-processor

« Costly 42

Aliasing

¢ Quantization/overflow

— Due to discrete nature of computer data
* Aliasing

— Due to discrete nature of sampling

43

Aliasing Example

« Sampling at 2.5 Hz, period of 0.4, the following are
indistinguishable
— y(t)=1.0*sin(6xt), frequency 3 Hz
— y(t)=1.0*sin(xt), frequency of 0.5 Hz
« In fact, with sampling frequency of 2.5 Hz
— Can only correctly sample signal below Nyquist frequency 2.5/2
=1.25Hz i S =m Rl E T E

44

11

CS122A: Embedded System Design

Computation Delay

Inherent delay in processing

— Actuation occurs later than expected

Need to characterize implementation delay to
make sure it is negligible

Hardware delay is usually easy to characterize
— Synchronous design

Software delay is harder to predict

— Should organize code carefully so delay is predictable
and minimized
— Write software with predictable timing behavior (be
like hardware)
» Time Trigger Architecture
« Synchronous Software Language and/or RTOS 45

4/24/2007

12

