
CS122A: Embedded System Design 4/24/2007

1

1

A Simple Introduction to
Embedded Control Systems

(PID Control)

2

Acknowledgements

• The material in this lecture is adapted
from:
– F. Vahid and T. Givargis, Embedded System

Design—A Unified Hardware/Software
Introduction, John Wiley & Sons, 2002
(Chapter 9)

– T. Wescott, “PID Without a PhD”
• http://www.embedded.com/2000/0010/0010feat3.htm

3

Control System
• Control physical system’s output

– By setting physical system’s input

• Tracking
• E.g.

– Cruise control
– Thermostat control
– Disk drive control
– Aircraft altitude control
– Chemical processes

• Difficulty due to
– Disturbance: wind, road, tire, brake; opening/closing door…
– Human interface: feel good, feel right…

4

Tracking

CS122A: Embedded System Design 4/24/2007

2

5

Open-Loop Control Systems
• Plant

– Physical system to be controlled
• Car, plane, disk, heater,…

• Actuator
– Device to control the plant

• Throttle, wing flap, disk motor,…

• Controller
– Designed product to control the plant

6

Open-Loop Control Systems
• Output

– The aspect of the physical system we are interested in
• Speed, disk location, temperature

• Reference
– The value we want to see at output

• Desired speed, desired location, desired temperature
• Disturbance

– Uncontrollable input to the plant imposed by environment
• Wind, bumping the disk drive, door opening

7

Other Characteristics of open
loop

• Feed-forward control
• Delay in actual change of the output
• Controller doesn’t know how well thing goes
• Simple
• Best use for predictable systems

8

Closed Loop Control Systems
• Sensor

– Measure the plant output
• Error detector

– Detect Error
• Feedback control systems
• Minimize tracking error

CS122A: Embedded System Design 4/24/2007

3

9

Designing Open Loop Control
System

• Develop a model of the plant
• Develop a controller
• Analyze the controller
• Consider Disturbance
• Determine Performance
• Example: Open Loop Cruise Control System

10

Model of the Plant
• May not be necessary

– Can be done through experimenting and tuning
• But,

– Can make it easier to design
– May be useful for deriving the controller

• Example: throttle that goes from 0 to 45 degree
– On flat surface at 50 mph, open the throttle to 40 degrees
– Wait 1 “time unit”
– Measure the speed, let’s say 55 mph
– Then the following equation satisfies the above scenario

• vt+1=0.7*vt+0.5*ut
• 55 = 0.7*50+0.5*40

– IF the equation holds for all other scenarios
• Then we have a model of the plant

11

Designing the Controller
• Assuming we want to use a simple linear function

– ut=F(rt)= P * rt
– rt is the desired speed

• Linear proportional controller
• vt+1=0.7*vt+0.5*ut = 0.7*vt+0.5P*rt
• Let vt+1=vt at steady state = vss
• vss=0.7*vss+0.5P*rt
• At steady state, we want vss=rt
• P=0.6

– I.e. ut=0.6*rt

12

Analyzing the Controller

• Let v0=20mph, r0=50mph
• vt+1=0.7*vt+0.5(0.6)*rt

=0.7*vt+0.3*50= 0.7*vt+15
• Throttle position is 0.6*50=30

degrees

CS122A: Embedded System Design 4/24/2007

4

13

Considering the Disturbance

• Assume road
grade can affect
the speed
– From –5mph to +5

mph
– vt+1=0.7*vt+10
– vt+1=0.7*vt+20

14

Determining Performance
• Vt+1=0.7*vt+0.5P*r0-w0
• v1=0.7*v0+0.5P*r0-w0
• v2=0.7*(0.7*v0+0.5P*r0-w0) +0.5P*r0-w0

=0.7*0.7*v0+(0.7+1.0)*0.5P*r0-(0.7+1.0)w0
• vt=0.7t*v0+(0.7t-1+0.7t-2+…+0.7+1.0)(0.5P*r0-w0)
• Coefficient of vt determines rate of decay of v0

– Bigger coefficient will result in slower response
– >1 or <-1, vt will grow without bound
– <0, vt will oscillate

15

Designing Closed Loop Control
System

16

Stability
• ut = P * (rt-vt)
• vt+1 = 0.7vt+0.5ut-wt = 0.7vt+0.5P*(rt-vt)-wt

=(0.7-0.5P)*vt+0.5P*rt-wt
• vt+1=(0.7-0.5P)t*v0+((0.7-0.5P)t-1+(0.7-0.5P)t-2+…+0.7

0.5P+1.0)(0.5P*r0-w0)

• Stability constraint (i.e. convergence) requires:
|0.7-0.5P|<1
-1<0.7-0.5P<1
-0.6<P<3.4
To avoid oscillation:
(0.7 - 5 P) >= 0
P <=1.4

CS122A: Embedded System Design 4/24/2007

5

17

Reducing effect of v0

• ut = P * (rt-vt)
• vt+1 = 0.7vt+0.5ut-wt = 0.7vt+0.5P*(rt-vt)-w

=(0.7-0.5P)*vt+0.5P*rt-wt
• vt=(0.7-0.5P)t*v0+((0.7-0.5P)t-1+(0.7-0.5P)t-2+…+0.7-

0.5P+1.0)(0.5P*r0-w0)

• To reduce the effect of initial condition
– 0.7-0.5P as small as possible
– P=1.4

18

Avoid Oscillation
• ut = P * (rt-vt)
• vt+1 = 0.7vt+0.5ut-wt = 0.7vt+0.5P*(rt-vt)-w

=(0.7-0.5P)*vt+0.5P*rt-wt

• vt=(0.7-0.5P)t*v0+((0.7-0.5P)t-1+(0.7-0.5P)t-2+…+0.7-
0.5P+1.0)(0.5P*r0-w0)

• To avoid oscillation
0.7-0.5P >=0
P<=1.4

19

Perfect Tracking
• ut = P * (rt-vt)
• vt+1 = 0.7vt+0.5ut-wt = 0.7vt+0.5P*(rt-vt)-w

=(0.7-0.5P)*vt+0.5P*rt-wt

• vss=(0.7-0.5P)*vss+0.5P*r0-w0

(1-0.7+0.5P)vss=0.5P*r0-w0

vss=(0.5P/(0.3+0.5P)) * r0 - (1.0/(0.3+0.5P)) * wo

• To make vss as close to r0 as possible
P should be as large as possible

20

Closed-Loop Design
• ut = P * (rt-vt)
• Finally, setting P=3.3

– Stable, track well, some oscillation
ut = 3.3 * (rt-vt)

CS122A: Embedded System Design 4/24/2007

6

21

Analyze the controller
• v0=20 mph, r0=50 mph, w=0
• vt+1 = 0.7vt+0.5P*(rt-vt)-w

= 0.7vt+0.5*3.3*(50-vt)
• ut = P * (rt-vt)

= 3.3 * (50-vt)

• But valid ut ranges from 0-45
• Controller saturates

22

Analyze the controller
• v0=20 mph, r0=50 mph, w=0
• vt+1 = 0.7vt+0.5*ut

• ut = 3.3 * (50-vt)
– Saturate at 0, 45

• Oscillation!
– “feel bad”

23

Analyze the controller
• Set P=1.0 to

void oscillation
– Terrible SS

performance

24

Analyzing the Controller

CS122A: Embedded System Design 4/24/2007

7

25

Minimize the effect of
disturbance

• vt+1 =
0.7vt+0.5*3.3*(rt-
vt)-w
– w=-5 or +5

• 39.74
– Close to 42.31
– Better than

• 33
• 66

• Cost
– SS error
– oscillation 26

General Control System
• Objective

– Causing output to track a reference even in the
presence of

• Measurement noise
• Model error
• Disturbances

• Metrics
– Stability

• Output remains bounded
– Performance

• How well an output tracks the reference
– Disturbance rejection
– Robustness

• Ability to tolerate modeling error of the plant

27

Performance (generally
speaking)

• Rise time
– Time it takes

from 10% to
90%

• Peak time
• Overshoot

– Percentage by
which Peak
exceed final
value

• Settling time
– Time it takes to

reach 1% of final
value

28

Plant modeling is difficult
• May need to be done first
• Plant is usually on continuous time

– Not discrete time
• E.g. car speed continuously react to throttle position, not at

discrete interval
– Sampling period must be chosen carefully

• To make sure “nothing interesting” happen in between
• I.e. small enough

• Plant is usually non-linear
– E.g. shock absorber response may need to be 8th

order differential
• Iterative development of the plant model and

controller
– Have a plant model that is “good enough”

CS122A: Embedded System Design 4/24/2007

8

29

Controller Design: P
• Proportional controller

– A controller that multiplies the tracking error by a constant
• ut = P * (rt-vt)

– Closed loop model with a linear plant
• E.g. vt+1 = (0.7-0.5P)*vt+0.5P*rt-wt

• P affects
– Transient response

• Stability, oscillation
– Steady state tracking

• As large as possible
– Disturbance rejection

• As large as possible

30

Controller Design: PD
• Proportional and Derivative control

• ut = P * (rt-vt) + D * ((rt-vt)-(rt-1-vt-1)) = P * et+ D * (et-et-1)

• Consider the size of error over time
• Intuitively

– Want to “push” more if the error is not reducing fast
enough

– Want to “push” less if the error is reducing really fast

31

PD Controller
• Need to keep track of error derivative
• E.g. Cruise controller example

– vt+1 = 0.7vt+0.5ut-wt
– Let ut = P * et + D * (et-et-1), et=rt-vt
– vt+1=0.7vt+0.5*(P*(rt-vt)+D*((rt-vt)-(rt-1-vt-1)))-wt
– vt+1=(0.7-0.5*(P+D))*vt+0.5D*vt-1+0.5*(P+D)*rt-0.5D*rt-

1-wt
– Assume reference input and disturbance are

constant, the steady-state speed is
• Vss=(0.5P/(1-0.7+0.5P)) * r
• Does not depend on D!!!

• P can be set for best tracking and disturbance
control

• Then D set to control oscillation/overshoot/rate
of convergence 32

PD Control Example

CS122A: Embedded System Design 4/24/2007

9

33

PI Control
• Proportional plus integral control

– ut=P*et+I*(e0+e1+…+et)
• Sum up error over time

– Ensure reaching desired output, eventually
– vss will not be reached until ess=0

• Use P to control disturbance
• Use I to ensure steady state convergence and

convergence rate

34

PID Controller
• Combine Proportional, integral, and derivative control

– ut=P*et+I*(e0+e1+…+et)+D*(et-et-1)

• Available off-the shelf

35

Block Diagram View of PID
Controller

36

Software Coding
• Main function loops forever, during each iteration

– Read plant output sensor
• May require A2D

– Read current desired reference input
– Call PidUpdate, to determine actuator value
– Set actuator value

• May require D2A

CS122A: Embedded System Design 4/24/2007

10

37

Software Coding (continued)

• Pgain, Dgain, Igain are constants
• sensor_value_previous

– For D control
• error_sum

– For I control

38

Computation

• ut=P*et+I*(e0+e1+…+et)+D*(et-et-1)

39

PID tuning

• Analytically deriving P, I, D may not be possible
– E.g. plant not is not available, or to costly to obtain

• Ad hoc method for getting “reasonable” P, I, D
– Start with a small P, I=D=0
– Increase D, until seeing oscillation

• Reduce D a bit

– Increase P, until seeing oscillation
• Reduce D a bit

– Increase I, until seeing oscillation
• Iterate until can change anything without

excessive oscillation 40

Excellent Reference for PID
Control

• PID Without a PhD by Tim Wescott
• http://www.embedded.com/2000/0010/001

0feat3.htm

CS122A: Embedded System Design 4/24/2007

11

41

Practical Issues with Computer-
Based Control

• Quantization
• Overflow
• Aliasing
• Computation Delay

42

Quantization & Overflow
• Quantization

– E.g. can’t store 0.36 as 4-bit fractional number
– Can only store 0.75, 0.59, 0.25, 0.00, -0.25, -050,-0.75, -1.00
– Choose 0.25

• Results in quantization error of 0.11
• Sources of quantization error

– Operations, e.g. 0.50*0.25=0.125
• Can use more bits until input/output to the environment/memory

– A2D converters

• Overflow
– Can’t store 0.75+0.50 = 1.25 as 4-bit fractional number

• Solutions:
– Use fix-point representation/operations carefully

• Time-consuming
– Use floating-point co-processor

• Costly

43

Aliasing
• Quantization/overflow

– Due to discrete nature of computer data
• Aliasing

– Due to discrete nature of sampling

44

Aliasing Example
• Sampling at 2.5 Hz, period of 0.4, the following are

indistinguishable
– y(t)=1.0*sin(6πt), frequency 3 Hz
– y(t)=1.0*sin(πt), frequency of 0.5 Hz

• In fact, with sampling frequency of 2.5 Hz
– Can only correctly sample signal below Nyquist frequency 2.5/2

= 1.25 Hz

CS122A: Embedded System Design 4/24/2007

12

45

Computation Delay
• Inherent delay in processing

– Actuation occurs later than expected
• Need to characterize implementation delay to

make sure it is negligible
• Hardware delay is usually easy to characterize

– Synchronous design
• Software delay is harder to predict

– Should organize code carefully so delay is predictable
and minimized

– Write software with predictable timing behavior (be
like hardware)

• Time Trigger Architecture
• Synchronous Software Language and/or RTOS

