A Simple Introduction to Embedded Control Systems (PID Control)

Control System
- Control physical system's output
 - By setting physical system's input
- Tracking
 - E.g.
 - Cruise control
 - Thermostat control
 - Disk drive control
 - Aircraft altitude control
 - Chemical processes
- Difficulty due to
 - Disturbance: wind, road, tire, brake; opening/closing door...
 - Human interface: feel good, feel right...

Acknowledgements
- The material in this lecture is adapted from:
 - T. Wescott, “PID Without a PhD”

Tracking
Open-Loop Control Systems

- **Plant**
 - Physical system to be controlled
 - Car, plane, disk, heater...
- **Actuator**
 - Device to control the plant
 - Throttle, wing flap, disk motor, ...
- **Controller**
 - Designed product to control the plant

Output
- The aspect of the physical system we are interested in
 - Speed, disk location, temperature
- Reference
 - The value we want to see at output
 - Desired speed, desired location, desired temperature
- Disturbance
 - Uncontrollable input to the plant imposed by environment
 - Wind, bumping the disk drive, door opening

Other Characteristics of open loop

- Feed-forward control
- Delay in actual change of the output
- Controller doesn’t know how well thing goes
- Simple
- Best use for predictable systems

Closed Loop Control Systems

- **Sensor**
 - Measure the plant output
- **Error detector**
 - Detect Error
- **Feedback control systems**
- **Minimize tracking error**
Designing Open Loop Control System

- Develop a model of the plant
- Develop a controller
- Analyze the controller
- Consider Disturbance
- Determine Performance
- Example: Open Loop Cruise Control System

Model of the Plant

- May not be necessary
 - Can be done through experimenting and tuning
- But,
 - Can make it easier to design
 - May be useful for deriving the controller
- Example: throttle that goes from 0 to 45 degree
 - On flat surface at 50 mph, open the throttle to 40 degrees
 - Wait 1 "time unit"
 - Measure the speed, let's say 55 mph
 - Then the following equation satisfies the above scenario
 - \(v_{t+1} = 0.7v_t + 0.5u_t \)
 - 55 = 0.7*50+0.5*40
 - If the equation holds for all other scenarios
 - Then we have a model of the plant

Designing the Controller

- Assuming we want to use a simple linear function
 - \(u_t = F(r_t) = P \cdot r_t \)
 - \(r_t \) is the desired speed
- Linear proportional controller
 - \(v_{t+1} = 0.7v_t + 0.5u_t = 0.7v_t + 0.5Pr_t \)
 - Let \(v_{t+1} = v_t \) at steady state = \(v_{ss} \)
 - \(v_{ss} = 0.7v_{ss} + 0.5Pr_t \)
 - At steady state, we want \(v_{ss} = r_t \)
 - \(P = 0.6 \)
 - i.e. \(u_t = 0.6r_t \)

Analyzing the Controller

- Let \(v_0 = 20 \text{ mph}, \ r_0 = 50 \text{ mph} \)
- \(v_{t+1} = 0.7v_t + 0.5(0.6)r_t \)
 - \(= 0.7v_t + 0.3*50 = 0.7v_t + 15 \)
 - Throttle position is 0.6*50=30 degrees
Considering the Disturbance

- Assume road grade can affect the speed
 - From -5 mph to +5 mph
 - $v_{t+1} = 0.7v_t + 10$
 - $v_{t+1} = 0.7v_t + 20$

<table>
<thead>
<tr>
<th>Time (t)</th>
<th>v_t</th>
<th>v_{t+} for $w = 15$</th>
<th>v_{t+} for $w = -15$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20.00</td>
<td>30.00</td>
<td>10.00</td>
</tr>
<tr>
<td>1</td>
<td>26.00</td>
<td>36.00</td>
<td>16.00</td>
</tr>
<tr>
<td>2</td>
<td>32.00</td>
<td>42.00</td>
<td>22.00</td>
</tr>
<tr>
<td>3</td>
<td>38.00</td>
<td>48.00</td>
<td>28.00</td>
</tr>
<tr>
<td>4</td>
<td>44.00</td>
<td>54.00</td>
<td>34.00</td>
</tr>
<tr>
<td>5</td>
<td>44.00</td>
<td>54.00</td>
<td>34.00</td>
</tr>
<tr>
<td>6</td>
<td>46.00</td>
<td>58.00</td>
<td>36.00</td>
</tr>
<tr>
<td>7</td>
<td>47.53</td>
<td>59.24</td>
<td>37.52</td>
</tr>
<tr>
<td>8</td>
<td>48.57</td>
<td>61.56</td>
<td>39.02</td>
</tr>
<tr>
<td>9</td>
<td>49.78</td>
<td>63.90</td>
<td>40.78</td>
</tr>
<tr>
<td>10</td>
<td>50.43</td>
<td>66.05</td>
<td>42.43</td>
</tr>
<tr>
<td>11</td>
<td>51.13</td>
<td>68.24</td>
<td>44.13</td>
</tr>
<tr>
<td>12</td>
<td>51.68</td>
<td>70.52</td>
<td>45.68</td>
</tr>
</tbody>
</table>

Determining Performance

- $v_{t+1} = 0.7v_t + 0.5P(r_t - w_t)$
- $v_1 = 0.7v_0 + 0.5P(r_0 - w_0)$
- $v_2 = 0.7(0.7v_0 + 0.5P(r_0 - w_0)) + 0.5P(r_0 - w_0)$
- $v_t = 0.7v_{t-1} + (0.7 + 1.0)(0.7 + 1.0)(0.7 + 1.0)w_t$
- $v(t) = 0.7v_{t-1} + (0.7 + 1.0)w_t$
- $v_t = 0.7v_{t-1} + (0.7 + 1.0)w_t$

Coefficient of v_t determines rate of decay of v_0
- Bigger coefficient will result in slower response
- > 1 or < -1, v_t will grow without bound
- < 0, v_t will oscillate

Designing Closed Loop Control System

- $u_t = P * (r_t - v_t)$
- $v_{t+1} = 0.7v_t + 0.5u_t - w_t = 0.7v_t + 0.5P(r_t - v_t) - w_t$
- $0.7 - 0.5P \geq 0$
- $P \leq 1.4$

Stability

- Stability constraint (i.e. convergence) requires:
 - $0.7 - 0.5P < 1$
 - $-1 \leq -0.7 - 0.5P \leq 1$
 - $0.6 - P \leq 3.4$

To avoid oscillation:
- $(0.7 - 5P) \geq 0$
- $P \leq 1.4$
Reducing effect of v_0

- $u_t = P \cdot (r_t-v_t)$
- $v_{t+1} = 0.7v_t + 0.5u_t - w_t = 0.7v_t + 0.5P(r_t-v_t)-w_t$
- $v_t = (0.7-0.5P)v_{t-1} + (0.7-0.5P)^2v_{t-2} + \ldots + 0.7-0.5P + 1.0)(0.5P r_{t0} - w_0)$
- To reduce the effect of initial condition
 - $0.7-0.5P$ as small as possible
 - $P = 1.4$

Avoid Oscillation

- $u_t = P \cdot (r_t-v_t)$
- $v_{t+1} = 0.7v_t + 0.5u_t - w_t = 0.7v_t + 0.5P(r_t-v_t)-w_t$
- $v_t = (0.7-0.5P)v_{t-1} + (0.7-0.5P)^2v_{t-2} + \ldots + 0.7-0.5P + 1.0)(0.5P r_{t0} - w_0)$
- To avoid oscillation
 - $0.7-0.5P \geq 0$
 - $P \leq 1.4$

Perfect Tracking

- $u_t = P \cdot (r_t-v_t)$
- $v_{ss} = (0.7-0.5P)v_{ss} + 0.5P r_0 - w_0$
- $(1-0.7+0.5P)v_{ss} = 0.5P r_0 - w_0$
- $v_{ss} = (0.5P/(0.3+0.5P)) \cdot r_0 - (1.0/(0.3+0.5P)) \cdot w_0$
- To make v_{ss} as close to r_0 as possible
 - P should be as large as possible

Closed-Loop Design

- $u_t = P \cdot (r_t-v_t)$
- Finally, setting $P = 3.3$
 - Stable, track well, some oscillation
 $u_t = 3.3 \cdot (r_t-v_t)$
Analyze the controller

- \(v_0 = 20 \text{ mph}, r_0 = 50 \text{ mph}, w = 0 \)
- \(v_{t+1} = 0.7v_t + 0.5P(r_t - v_t) - w \)
 \(= 0.7v_t + 0.5 \times 3.3(50 - v_t) \)
- \(u_t = P(r_t - v_t) \)
 \(= 3.3(50 - v_t) \)

- But valid \(u_t \) ranges from 0-45
- Controller saturates

Analyzing the Controller

- Set \(P = 1.0 \) to void oscillation
 - Terrible SS performance
Minimize the effect of disturbance

- \(v_{t+1} = 0.7v_t + 0.5 \times 3.3 (r_t - v_t) - w \)
 - \(w = -5 \) or \(+5 \)

- 39.74
 - Close to 42.31
 - Better than
 - 33
 - 66

- Cost
 - SS error
 - Oscillation

General Control System

- Objective
 - Causing output to track a reference even in the presence of
 - Measurement noise
 - Model error
 - Disturbances

- Metrics
 - Stability
 - Output remains bounded
 - Performance
 - How well an output tracks the reference
 - Disturbance rejection
 - Robustness
 - Ability to tolerate modeling error of the plant

Performance (generally speaking)

- Rise time
 - Time it takes from 10% to 90%
- Peak time
- Overshoot
 - Percentage by which Peak exceed final value
- Settling time
 - Time it takes to reach 1% of final value

Plant modeling is difficult

- May need to be done first
- Plant is usually on continuous time
 - Not discrete time
 - E.g. car speed continuously react to throttle position, not at discrete interval
 - Sampling period must be chosen carefully
 - To make sure “nothing interesting” happen in between
 - I.e. small enough
- Plant is usually non-linear
 - E.g. shock absorber response may need to be 8th order differential
- Iterative development of the plant model and controller
 - Have a plant model that is “good enough”
Controller Design: P

- Proportional controller
 - A controller that multiplies the tracking error by a constant
 - \(u_t = P \cdot (r_t - v_t) \)
 - Closed loop model with a linear plant
 - E.g. \(v_{t+1} = (0.7 - 0.5P) v_t + 0.5P r_t - w_t \)
- \(P \) affects
 - Transient response
 - Stability, oscillation
 - Steady state tracking
 - As large as possible
 - Disturbance rejection
 - As large as possible

Controller Design: PD

- Proportional and Derivative control
 - \(u_t = P \cdot (r_t - v_t) + D \cdot ((r_t - v_t) - (r_{t-1} - v_{t-1})) \)
- Consider the size of the error over time
- Intuitively
 - Want to “push” more if the error is not reducing fast enough
 - Want to “push” less if the error is reducing really fast

PD Controller

- Need to keep track of error derivative
- E.g. Cruise controller example
 - \(v_{t+1} = 0.7v_t + 0.5u_t - w_t \)
 - Let \(u_t = P \cdot e_t + D \cdot (e_t - e_{t-1}) \), \(e_t = r_t - v_t \)
 - \(v_{t+1} = (0.7 - 0.5(P+D))v_t + 0.5Dv_{t-1} + 0.5(P+D)r_t - 0.5Dv_{t-1} - w_t \)
 - Assume reference input and disturbance are constant, the steady-state speed is
 - \(V_{ss} = (0.5P/(1-0.7+0.5P)) \cdot r \)
 - Does not depend on \(D \)!!!
- \(P \) can be set for best tracking and disturbance control
- Then \(D \) set to control oscillation/overshoot/rate of convergence

PD Control Example
PI Control

- Proportional plus integral control
 - $u_t = P \cdot e_t + I \cdot (e_0 + e_1 + \ldots + e_t)$
- Sum up error over time
 - Ensure reaching desired output, eventually
 - v_u will not be reached until $e_u = 0$
- Use P to control disturbance
- Use I to ensure steady state convergence and convergence rate

PID Controller

- Combine Proportional, integral, and derivative control
 - $u_t = P \cdot e_t + I \cdot (e_0 + e_1 + \ldots + e_t) + D \cdot (e_t - e_{t-1})$
- Available off-the-shelf

Block Diagram View of PID Controller

Software Coding

- Main function loops forever, during each iteration
 - Read plant output sensor
 - May require A2D
 - Read current desired reference input
 - Call PidUpdate, to determine actuator value
 - Set actuator value
 - May require D2A
Software Coding (continued)

- P_{gain}, D_{gain}, I_{gain} are constants
- $\text{sensor_value_previous}$
 - For D control
- error_sum
 - For I control

typedef struct PID_DATA {
 double P_{gain}, D_{gain}, I_{gain};
 double $\text{sensor_value_previous}$; // find the derivative
da double error_sum; // cumulative error
} PID_DATA

Computation

- $u_t = P_{gain}e_t + I(e_0 + e_1 + ... + e_t) + D(e_t - e_{t-1})$

```c
double PIDUpdate(PID_DATA *pid_data, double sensor_value, double reference_value) {
  double error, derivative, integral;
  error = reference_value - sensor_value;
  derivative = pid_data->$D_{gain}$ * error; // proportional term
  integral += pid_data->$I_{gain}$ * error; // current = cumulative
  pid_data->$P_{gain}$ += derivative;
  pid_data->$I_{gain}$ += integral;
  pid_data->$D_{gain}$ += derivative;
  return (error + derivative + integral);
}
```

PID tuning

- Analytically deriving P, I, D may not be possible
 - E.g. plant not is not available, or too costly to obtain
- Ad hoc method for getting “reasonable” P, I, D
 - Start with a small P, I=0
 - Increase D, until seeing oscillation
 - Reduce D a bit
 - Increase P, until seeing oscillation
 - Reduce P a bit
 - Increase I, until seeing oscillation
 - Iterate until can change anything without excessive oscillation

Excellent Reference for PID Control

- PID Without a PhD by Tim Wescott
 0feat3.htm
Practical Issues with Computer-Based Control

- Quantization
- Overflow
- Aliasing
- Computation Delay

Quantization & Overflow

- Quantization
 - E.g. can't store 0.36 as 4-bit fractional number
 - Can only store 0.75, 0.50, 0.25, 0.00, -0.25, -0.50, -0.75, -1.00
 - Choose 0.25
 - Results in quantization error of 0.11
- Sources of quantization error
 - Operations, e.g. 0.50 * 0.25 = 0.125
 - Can use more bits until input/output to the environment/memory
 - ADC converters
- Overflow
 - Can't store 0.75 + 0.50 = 1.25 as 4-bit fractional number
- Solutions:
 - Use fix-point representation/operations carefully
 - Time-consuming
 - Use floating-point co-processor
 - Costly

Aliasing

- Quantization/overflow
 - Due to discrete nature of computer data
- Aliasing
 - Due to discrete nature of sampling

Aliasing Example

- Sampling at 2.5 Hz, period of 0.4, the following are indistinguishable
 - y(t) = 1.0 * sin(6πt), frequency 3 Hz
 - y(t) = 1.0 * sin(πt), frequency of 0.5 Hz
- In fact, with sampling frequency of 2.5 Hz
 - Can only correctly sample signal below Nyquist frequency 2.5/2 = 1.25 Hz
Computation Delay

- Inherent delay in processing
 - Actuation occurs later than expected
- Need to characterize implementation delay to make sure it is negligible
- Hardware delay is usually easy to characterize
 - Synchronous design
- Software delay is harder to predict
 - Should organize code carefully so delay is predictable and minimized
 - Write software with predictable timing behavior (be like hardware)
 - Time Trigger Architecture
 - Synchronous Software Language and/or RTOS