Still More Lab 6 Considerations; Embedded System Power Issues; Project Information

55:036, Embedded Systems and Systems Software

Lab 6—RS-232 Communication The following routines are provided for devices with a single USART peripheral:

BusyUSART	Is the USART transmitting?
CloseUSART	Disable the USART.
DataRdyUSART	Is data available in the USART read buffer?
getsUSART	Read a string from the USART.
OpenUSART	Configure the USART
putsUSART	Write a string from data memory to USART
putrsUSART	Write a string from program memory to USART.
ReadUSART (or getcUSART)	Read a byte from the USART
WriteUSART (or putcUSART)	Write a byte to the USART.

Lab 6—RS-232 Communication

• Configuring the USART:

OpenUSART(USART_TX_INT_OFF & USART_RX_INT_OFF & USART_ASYNCH_MODE & USART_NINE_BIT & USART_CONT_RX & USART_BRGH_HIGH, 32);

Lab 6—RS-232 Communication

• Configuring the USART:

OpenUSART(USART_TX_INT_OFF & USART_RX_INT_OFF & USART_ASYNCH_MODE & USART_NINE_BIT & USART_CONT_RX & USART_CONT_RX & USART_BRGH_HIGH, 32);

A	\ch	iev	vabl	еE	Bau	ud r	ate	es (BR	G⊦	1 =1)
HIGH	2500		0	2062.50		0	1562.50		0	1250		0
LOW	9.77		255	8,06		255	6.10		255	4.88		255
BAUD			SPBRG	10 MHz		SPBRG	7.15909 MHz		SPBRG	5.0688 MHz		SPBRG
(Kbps)	KBAUD	ERROR	(decimal)	KBAUD	ERROR	(decimal)	KBAUD	% ERROR	(decimal)	KBAUD	ERROR	(decimal)
0.3	NA		/	NA			NA			NA		
1.2	NA		- /	NA			NA			NA		
2.4	NA		-	NA			2.41	+0.23	185	2.40	0	131
9.6	9.62	+0.16	103	9.62	+0.16	64	9.52	-0.83	48	9.60	0	32
19.2	19.23	+0.16	51	18.94	-1.36	32	19.45	+1.32	22	18.64	-2.94	16
76.8	78.92	+0.16	12	78.13	+1.73	7	74.57	-2.90	5	79.20	+3.13	3
96	100	+4.17	9	89.29	-6.99	6	89.49	-6.78	4	105.60	+10.00	2
300	333.33	+11.11	2	312.50	+4.17	1	447.44	+49.15	0	316.80	+5.60	0
500	500	0	1 \	625	+25.00	0	447.44	-10.51	0	NA		
HIGH	1000	•	0	625		0	447.44		0	316.80		0
LOW	3.91	•	255	2.44		255	1.75		255	1.24		255
BAUD RATE (Kbps)	Fosc = 4 MHz SPBRQ		3.579545 MHz SPBRQ		1 MHz		SPBRG	32.768 kHz		SPBRG		
	KBAUD	S ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)
0.3	NA	•		NA			0.30	+0.16	207	0.29	-2.48	6
							1			1		-

1	Ach	nie∨	/abl	еE	Bau	ud r	ate	es (BR	GF	i =1)
HIGH	2500		0	2062.50		0	1562.50		0	1250		0
LOW	9.77		255	8,06		255	6.10		255	4.88		255
BAUD RATE (Kbos)		% value		10 MHz SPBRG		7.15909 MHz		SPBRQ value (decimal)	5.0688 MHz		SPBRQ value	
(Kbps	KBAUD	ERROR	(decimal)	KBAUD	ERROR	(decimal)	KBAUD	ERROR	(decimal)	KBAUD	ERROR	(decimai)
0.3	NA	•	• /	NA			NA			NA	•	
1.2	NA	-	- /	NA			NA	-		NA		
2.4	NA		•	NA		•	2.41	+0.23	185	2.40	0	131
9.6	9.62	+0.16	101	9.62	+0.16	64	9.52	-0.83	46	9.60	0	32
19.2	19.23	+0.16	51	18.94	-1.36	32	> 19.45	+1.32	22	18.64	-2.94	16
76.8	78.92	+0.16	12	78.13	+1.73	7	74.57	-2.90	5	79.20	+3.13	3
96	100	+4.17	9	89.29	-6.99	6	89.49	-6.78	4	105.60	+10.00	2
300	333.33	+11.11	2	312.50	+4.17	1	447.44	+49.15	0	316.80	+5.60	0
500 HIGH	500	0	:	625	+25.00	0	447.44	-10.51	0	NA 316.80	•	:
LOW	3.91	-	255	625	•	0	1.75		0		•	0
2014	1 3.91		e00	2.44	•		1.75	· ·	400	1.24		255
BAUD RATE (Kbps)		Fosc = 4 MHz SPBRQ value		3.579545 MHz SPBRQ value				SPBRG value	32.768 kHz		SPBRG value	
	KBAUD	ERROR	(decimal)	KBAUD	ERROR	(decimal)	KBAUD	ERROR	(decimal)	KBAUD	ERROR	(decimal)
0.3	NA			NA			0.30	+0.16	207	0.29	-2.48	6

UART--Reading and Writing char ReadUSART(void);

firstCh = ReadUSART(); nextCh = ReadUSART();

UART--Reading and Writing char ReadUSART(void); firstCh = ReadUSART(); nextCh = ReadUSART(); readUSART just reads the USART ReceiveBuffer. Doesn't wait for a new character to arrive

UART--Reading and Writing

char ReadUSART(void);

while (!DataRdyUSART()) /* busy wait*/;
firstCh = ReadUSART();
while (!DataRdyUSART()) /* busy wait*/;
nextCh = ReadUSART();

Wait for new data to arrive before reading USART

Caution: In Lab 6, do not busy wait while waiting for RS-232 input, as discussed last time in lecture

UART--Reading and Writing

void WriteUSART(char data);

WriteUSART('H'); WriteUSART('e'); WriteUSART('I'); WriteUSART('I'); WriteUSART('o'); WriteUSART(' '); putrsUSART("World");

Minimizing Embedded System Power Consumption

- · Low power consumption is especially important for:
 - battery-powered applications
 - heat-sensitive applications
- · Some applications require battery-backup to remain operational though power failures
 - A "sleep mode" may be used to permit the system to retain critical state information and data
- · These days, power consumption is an issue for all most all electronic devices
 - e.g. Energy Star

Factors Contributing to IC Device **Power Consumption**

- Supply voltage (V_{dd})
 - Lowering Vdd can dramatically decrease power:
 - -e.g. for DS1305
 - Vcc timekeeping supply current (Osc on): = 81 uA at 5V =25.3 uA at 2V
 - Many devices have low-power versions available that can operate with low V_{dd} • e.g. PIC18LF452 can operate down to 2.0 V

Factors Contributing to IC Device Power Consumption--Continued

- Clock Frequency
 - Essentially a linear relationship between clock
 - frequency and power consumption
 - Should use the lowest clock frequency suitable for the application
 - Considerations in selecting a clock frequency
 - task execution time—e.g. interrupt service time
 timer resolution (tick rate)
 - I/O speeds (RS-232, SPI, I2C)
 - Others?
 - A good low frequency clock source for a microcontroller is a 32.768 KHz watch crystal (like the one we are using for the DS1305 in Lab 6)

Factors Contributing to IC Device **Power Consumption--Continued**

- I/O pins
 - floating input pins can consume power
 - unused I/O pins should be configured as outputs or pulled high or low
- Device Features
 - Generally speaking, the more features a device has, the more power it consumes
 - Should select microcontrollers and other devices with the minimum feature set needed by your application
 - Also, turn off features (modules) when they are not needed
 - Most PIC modules can be switched completely off—e.g. ADC, MSSP, USART, ...

· Sleep mode

- Many devices have an inactive (sleep) mode in which the device consumes little power.
- Eg. PIC Microcontroller sleep mode
 - Entered by executing a sleep instruction
 - Puts the device into quiescent state
 - turns off oscillator
 - stops instruction execution
 - Processor can be woken up by:
 - reset operation
 - watchdog timer
 - certain interrupts

Final Project

Important Dates:

- Project proposals due on Tues, April 10
 - Short (<1 page)
 - Provide enough detail to allow me to assess the scope and feasibility of your proposed design
- Project proposal must be approved, before you can proceed with your project
 - Proposals will be approved/declined by Thursday, April 13
- Proposals may be submitted any time prior to the deadline to expedite approval and ordering of parts.

Final Project Yep, that's right-One week from today

• Important Dates:

- Project proposals due on Tues, April 10
 - Short (<1 page)
 - Provide enough detail to allow me to assess the scope and feasibility of your proposed design
- Project proposal must be approved, before you can proceed with your project
 - Proposals will be approved/declined by Thursday, April 12
- Proposals may be submitted any time prior to the deadline to expedite approval and ordering of parts.

Final Project

- Important Dates (Continued):
 - Project Report due date is Friday, May 4 by 5:00 p.m.
 - Report format essentially same as for lab reports
 - Make sure that you provide sufficient detail regarding project specification and design.
 - Last project demonstration/ sign-off date is Thursday, May 3
 - In-class presentations: T, May 1, Th, May 3
 - Note: There is no Pre-Lab requirement for the Final Project