Still More Lab 6 Considerations;
Embedded System Power
Issues; Project Information

55:036, Embedded Systems and
Systems Software

Lab 6—RS-232 Communication

The following routines are provided for devices with a
single USART peripheral:

BusyUSART Is the USART transmitting?

CloseUSART Disable the USART.

DataRdyUSART Is data available in the USART read buffer?
getsUSART Read a string from the USART.

OpenUSART Configure the USART

-putsUSART Write a string from data memory to USART
butrsUSART Write a string from program memory to USART.
ReadUSART (or getcUSART) Read a byte from the USART

WriteUSART (or putcUSART) Write a byte to the USART.

Lab 6—RS-232 Communication

» Configuring the USART:

OpenUSART(USART_TX_INT_OFF &
USART_RX_INT_OFF &
USART_ASYNCH_MODE &
USART_NINE_BIT &
USART_CONT_RX &
USART_BRGH_HIGH,

32);

Lab 6—RS-232 Communication

» Configuring the USART:

OpenUSART(USART_TX_INT_OFF &
USART_RX_INT_OFF &
/ USART_ASYNCH_MODE &
USART_NINE_BIT &
Both TxandRx USART_CONT_RX &

interrupts disabled USART BRGH HIGH
32);

Lab 6—RS-232 Communication

» Configuring the USART:

OpenUSART(USART_TX_INT_OFF &
USART_RX_INT_OFF &
. USART_ASYNCH_MODE &
USART_NINE_BIT &
Configure USART ~ USART_CONT_RX &
for Asynchronous USART BRGH HIGH
110 32); - - '

Lab 6—RS-232 Communication

« Configuring the USART:

OpenUSART(USART_TX_INT_OFF &
USART_RX_INT_OFF &
USART_ASYNCH_MODE &
USART_NINE_BIT &
USART_CONT_RX &
USART_BRGH_HIGH,

32);

for BRGH and the
value for SPRRG to
obtain the desired
baud rate

Must specify the setting {

The USART Clock Generator

FIGURE 16-4: USART RECEIVE BLOCK DIAGRAM

The UART Clock Generator

FIGURE 16-4: USART RECEIVE BLOCK DIAGRAM

Eight bit counter, clocked at f,

osc

The UART Clock Generator

FIGURE 16-4: USART RECEIVE BLOCK DIAGRAM

Eight bit counter, clocked at f . f..(SPBRG+1)
osc

The UART Clock Generator

Determined by BRGH
FIGURE 16-4: USART RECEIVE BLOCK DIAGRAM

Baud Rate:
f,sc/(SPBRG+I)16
fose/(SPBRG+1) or
f.. /(SPBRG+1)64

Eight bit counter, clocked at f

Setting the Baud Rate

BRGH=1 BRGH=0
(High rate) (Low Rate)

Baud Rate = _ Fose ___Fosc
16(SFBRG+1) G4(SPBRG+1)

BROH, F,... SPBRG,

Achievable Baud rates (BRGH=1)

HGH | 2500 - L] im” - o | 158250 - L] | 1250 -] |
LOW TT = 285 808 = Fo) a0 = Foo) 4B 2 08
pavp | FosemteME oo 10z x TIN0OMME gpang | SOSBMME g
RATE - i - adoe - alue % i
55%) | kmauo emnon (%G| pun erron wBaup Enmon (%Ml | ypaup erron (decime)
03 A A NA - NA -
12 NA A - - \NA - - NA . -
24 | WA : . HA . . a1 02 we | 2 o m
L1] L1 08 " wn2 +0.18 - 52 083 “ 960 o =
w2 1923 +018 &1 R SE] = 645 k-3 @ 18.84 2 "
s | TaRe .06 12 L T 7 ag 290 5 720 WA 3
] 10 1T L] = 4.0 a &0 & 478 4 10580 +10.00 2
300 33333 i 2 N T 1 AT AL 4015 o 31880 +5.80 o
00 | s [1 @ s 0 fures 0s o A -
G 100 o L1 B a T B o 880 - L]
Low | asm s \pas . 178 285 124 - 25 |
saup | Poscedbrn oo [aememmn ol 1hee T
RATE - alue - alue ™ valoh - v
(K0p%) | xpauo _eamon (Scimal | ypaup gamon (Meimel | paup grrom (90 | cpaun Enmon (desimal)
o | A [T T | om0 e z7 | om ae 8 |

Achievable Baud rates (BRGH=1) UART--Reading and Writing

I R e char ReadUSART (void);
x o owfm o firstCh = ReadUSART():
e e nextCh = ReadUSART();
. Coa s o
saup | Poscedbre oo [aememms ol ™ [T T -
UART--Reading and Writing UART--Reading and Writing
char ReadUSART (void); char ReadUSART(void);

while (IDataRdyUSART()) /* busy wait*/;

ReadUSART just reads the

firstCh= SART(); UsART RecelveBuffer. Docsn' firstCh = ReadUSART();
eadUSART(); & while (IDataRdyUSART()) * busy wait*/;

nextCh = ReadUSART(); '

Wait for new data to arrive
before reading USART

UART--Reading and Writing
char ReadUSART (void);

while (IDataRdyUSART()) /* busy wait*/;
firstCh = ReadUSART();

while (IDataRdyUSART()) * pusy wait*/;
nextCh = ReadUSART(); '

Wait for new data to arrive
before reading USART

Caution: In Lab 6, do not busy wait while waiting for
RS-232 input, as discussed last time in lecture

UART--Reading and Writing

void WriteUSART (char data);

WriteUSART(‘H’);
WriteUSART(‘e’);
WriteUSART(T');
WriteUSART('I');
WriteUSART('0’);
WriteUSART(" *);
putrsUSART (“World”);

UART--Reading and Writing

void WriteUSART (char data);

WriteUSART(‘H’);
WritelSART('g");

WriteUSART() doesn’t check
for Tx Buffer empty before
writing to the USART.

UART--Reading and Writing

while(BusyUSARTY()) ;

WriteUSART(*H');

while(BusyUSART()) ; .

WriteUSART(‘e’); T

while(BusyUSART()) ; o

WriteUSART('l"); Wait for USART Tx Buffer
while(BusyUSART()) ; to become empty before

WriteUSART(l"); writing another byte to it.
while(BusyUSARTY()) ;

WriteUSART(‘0");

while(BusyUSARTY()) ;

WriteUSART();

while(BusyUSARTY()) ;

putrsUSART (“World");

Minimizing Embedded System
Power Consumption
* Low power consumption is especially important
for:
— battery-powered applications
— heat-sensitive applications
« Some applications require battery-backup to
remain operational though power failures
— A “sleep mode” may be used to permit the system to
retain critical state information and data
* These days, power consumption is an issue for
all most all electronic devices
— e.g. Energy Star

Factors Contributing to IC Device
Power Consumption

* Supply voltage (V)
— Lowering Vdd can dramatically decrease
power:
—e.g. for DS1305

* Vcc timekeeping supply current (Osc on):
=8luAat5Vv
=25.3 uA at 2V
— Many devices have low-power versions
available that can operate with low V4
* e.g. PIC18LF452 can operate down to 2.0 V

Factors Contributing to IC Device
Power Consumption--Continued

» Clock Frequency

— Essentially a linear relationship between clock
frequency and power consumption
— Should use the lowest clock frequency suitable for the
application
« Considerations in selecting a clock frequency
— task execution time—e.g. interrupt service time
— timer resolution (tick rate)
— I/O speeds (RS-232, SPI, 12C)
— Others?
— A good low frequency clock source for a
microcontroller is a 32.768 KHz watch crystal (like the
one we are using for the DS1305 in Lab 6)

Factors Contributing to IC Device
Power Consumption--Continued

¢ |/O pins

— floating input pins can consume power

— unused /O pins should be configured as outputs or
pulled high or low

* Device Features

— Generally speaking, the more features a device has,
the more power it consumes

— Should select microcontrollers and other devices with
the minimum feature set needed by your application

— Also, turn off features (modules) when they are not
needed

« Most PIC modules can be switched completely off—e.g.
ADC, MSSP, USART, ...

Saving Power

» Sleep mode

— Many devices have an inactive (sleep) mode
in which the device consumes little power.
— Eg. PIC Microcontroller sleep mode
« Entered by executing a sleep instruction
« Puts the device into quiescent state
— turns off oscillator
— stops instruction execution
« Processor can be woken up by:
— reset operation
— watchdog timer
— certain interrupts

An Example

itchi ifier { Digi-Key No. BASZIDICT)
100 mA maximum forward current

AC power sapply i
‘ GND +5V 3gvmmfnmmwww
BR?JJJ v
(Dlg Key Mo m:s)
in hobder

{Dlg Key No. 1027 K)

ik

:upr mﬂxuw-l 3pF Dlp—KeyNo

Swilching diode
(Digi-Key No. IN4LEDICT) ‘,1 3991892
!Dm Nnml

£ Voo TIOSI
PICISLF452 Toert o 051
01

Timerl counter Fosc = 32768 Hz HF T
Set TMRI 1o [+4] p—
awaken chip POR

startap
SLEEP mode operation Mormal mode operation with clock
internal clock = §152 Hz
(a) Cireuit

Battery Backup An Example

itchi ifier { Digi-Key No. BASZIDICT)
100 mA maximum forward current

AC power sapply
— 1.0V maximum forward
‘ GNB— +5V |0 h voltage drop
BR?JJJ &
(Dlg Key Mo m:s)
in hobder

{Dlg Key No. 1027 K)
1+

ik

:upr mﬂxuw-l aspr(mp-xeym

N4 o 399-1892
(Digi-Key No. IN4L4SDI "j
¥/HL !Dm Nnm -

55 Voo TIOST 100 k£t
PICISLF452 Toert o osc1
o
Timerl counter Fosc = 32766 Hz HF T
Set TMEI 10 [+4] [——
awaken chip POR
sartp
SLEEP mode operation Mormal mode operation with clock
intenal clock = §192 Hz
{a) Clreuit

An Example PIC Low-voltage Detect (LVD)

Can generate LVD when Vvdd
drops below specified threshold

(Digi- x}/,é BAS2IDICT)

‘ AC power supply 100 mA maximum i
1.0V maximum fc wllmdwp
L2 5V 131 A mazimum LVD ISR can put the PIC
Bk?.!:j ;
v J into sleep mode
(Dlg Key Mo m:s)
n holder

{Dlg Key No. 1027 K)
1+

ik

=;|'N0
(Digi-Key No. IN41 }

55 \-'
PIC‘IBLF‘SZ

o ,.FI

i3
83 5‘
;;

A

i,

SLEEF mode operation Mormal mode operation with
internal clock = 8152 Hz

() Cireuit

An Example

Switching rectifier { NBAS!.IDK.'D
Ill HD‘GK‘}'“

AC power supply 100 mA
D sV |y simum ore "“’i"‘“d“’" Timer 1 is driven by a
BR 2325
3V lithium cell | E— 32.768 KHz Osc.
[Dw Key No. P135)
i holder
LDm-szNunm K)
- o+
= i msauxmal 3 pF D,‘,MN
ihﬂnm %m} _g' \{\
anqNoWIl
Vss Voo 100 k0
PICISLF452 11mn ucull.uor
‘_‘MA [Focoitisre |MF
=
St TMR1 to I —_—
awaken chip POR
slartup
SLEEF mode operation Normal mode operation with clock
internal clock = §192 Hz

(a) Circuit

An Example

Switching rectifier { NBAS!.IDK.'D
Ill HD‘GK‘}'“

AC power supply 100 mA
D sV |y i o "'“’i"fd'"" Timer 1 is driven by a
BR 2325
3V lithium cell | E— 32.768 KHz Osc.
[D'.Bl Key No. P135)
in holder
lD!lVKﬂ'NBIwKJ
- o+
= Swicing dde mmmd TpF D,,HN
“"ﬂnm ICT) _ék.ﬁ }_] | Y\m—
| Digi-Key No. X801
V“ Voo 100 k£
mnnuulmfx st
‘_‘MA J Fosc® oL
=
Set TMRI 1o +4 —_—
awaken chip - POR
startup
SLEEF mode operation Normal mode operation with ok
internal clock = 8192 Hz

(a) Clrcuit
Timer1 roll-over will occur every 2 seconds.
Configure PIC to wakeup on Timer1 roll-over

An Example

Suitching rectfer (Digl-Key No BASZIDICT)

AC pawer supply 100 mA maxim
D RE L Feipeosiio o "'“”"fl_‘""" Timer 1 is driven by a
BR 235
3V lithium cell ¥ U 32.768 KHz Osc.
[Dw Key No. P135)
n holder
lD!wK:yNuICQ‘?K.J

- FI o
(Digh-Key Nou |m1%% é
Dm&'mn

mmmd 3 pF \(\Dw K.zyN
x.anl i

vg_ Voo 100 kf}
1'|m¢rl ucll.uor
‘_‘MA [Focmmians |01
Set TMRI to —_——
awaken chip POR
slartup
SLEEP mode operation NW operation with dock
internal dleck = 8192 Hz

(a) Circuit
Timerl interrupt will occur every 2 seconds
Configure PIC to wakeup on Timerl interrupt

PIC can update time of-day clock
& check if LVD is still present.
If so, go back to sleep

Final Project

¢ Conducted during the last three weeks of class

¢ Assignment: Design and implement an
embedded application of your choosing

Constraint: Your system must include at least

one of the following:

— Use of a PIC feature not used in previous labs—e.g.

CCP unit

— Use of a protocol not used in labs—e.g. 12C
— Use of a peripheral chip not used in lab

Scope/complexity of your application must be at
least comparable to that of lab 5 and lab 6.

 Stretch yourselves--more points will be awarded

to more ambitious projects

Final Project

Important Dates:

— Project proposals due on Tues, April 10
» Short (<1 page)
« Provide enough detail to allow me to assess the
scope and feasibility of your proposed design
— Project proposal must be approved, before you
can proceed with your project
« Proposals will be approved/declined by Thursday,
April 13
— Proposals may be submitted any time prior to

the deadline to expedite approval and ordering
of parts.

Final Project yee tats rign—
One week from today
« Important Dates: N
— Project proposals due@Tues, April 10
« Short (<1 page) —
« Provide enough detail to allow me to assess the
scope and feasibility of your proposed design
— Project proposal must be approved, before you
can proceed with your project
« Proposals will be approved/declined by Thursday,
April 12
— Proposals may be submitted any time prior to

the deadline to expedite approval and ordering
of parts.

Final Project

Important Dates (Continued):

— Project Report due date is Friday, May 4 by
5:00 p.m.
« Report format essentially same as for lab reports
« Make sure that you provide sufficient detail
regarding project specification and design.
— Last project demonstration/ sign-off date is
Thursday, May 3
— In-class presentations: T, May 1, Th, May 3

Note: There is no Pre-Lab requirement for
the Final Project

