
1

Still More Lab 6 Considerations;
Embedded System Power
Issues; Project Information

55:036, Embedded Systems and
Systems Software

Lab 6—RS-232 Communication
The following routines are provided for devices with a
single USART peripheral:

BusyUSART Is the USART transmitting?

CloseUSART Disable the USART.

DataRdyUSART Is data available in the USART read buffer?

getsUSART Read a string from the USART.

OpenUSART Configure the USART
.
putsUSART Write a string from data memory to USART
.
putrsUSART Write a string from program memory to USART.

ReadUSART (or getcUSART) Read a byte from the USART

WriteUSART (or putcUSART) Write a byte to the USART.

Lab 6—RS-232 Communication

• Configuring the USART:

OpenUSART(USART_TX_INT_OFF &
USART_RX_INT_OFF &
USART_ASYNCH_MODE &
USART_NINE_BIT &
USART_CONT_RX &
USART_BRGH_HIGH,
32);

Lab 6—RS-232 Communication

• Configuring the USART:

OpenUSART(USART_TX_INT_OFF &
USART_RX_INT_OFF &
USART_ASYNCH_MODE &
USART_NINE_BIT &
USART_CONT_RX &
USART_BRGH_HIGH,
32);

Both Tx and Rx
interrupts disabled

2

Lab 6—RS-232 Communication

• Configuring the USART:

OpenUSART(USART_TX_INT_OFF &
USART_RX_INT_OFF &
USART_ASYNCH_MODE &
USART_NINE_BIT &
USART_CONT_RX &
USART_BRGH_HIGH,
32);

Configure USART
for Asynchronous
I/O

Lab 6—RS-232 Communication

• Configuring the USART:

OpenUSART(USART_TX_INT_OFF &
USART_RX_INT_OFF &
USART_ASYNCH_MODE &
USART_NINE_BIT &
USART_CONT_RX &
USART_BRGH_HIGH,
32);

Must specify the setting
for BRGH and the
value for SPRRG to
obtain the desired
baud rate

The USART Clock Generator The UART Clock Generator

Eight bit counter, clocked at fosc

3

The UART Clock Generator

Eight bit counter, clocked at fosc fosc/(SPBRG+1)

The UART Clock Generator

Eight bit counter, clocked at fosc fosc/(SPBRG+1)

Baud Rate:
fosc/(SPBRG+1)16
or
fosc/(SPBRG+1)64

Determined by BRGH

Setting the Baud Rate

Baud Rate =

BRGH=1
(High rate)

BRGH=0
(Low Rate)

Achievable Baud rates (BRGH=1)

4

Achievable Baud rates (BRGH=1) UART--Reading and Writing
char ReadUSART(void);

firstCh = ReadUSART();
nextCh = ReadUSART();

UART--Reading and Writing
char ReadUSART(void);

firstCh = ReadUSART();
nextCh = ReadUSART();

ReadUSART just reads the
USART ReceiveBuffer. Doesn’t
wait for a new character to
arrive

UART--Reading and Writing
char ReadUSART(void);

while (!DataRdyUSART()) /* busy wait*/;
firstCh = ReadUSART();
while (!DataRdyUSART()) /* busy wait*/;
nextCh = ReadUSART();

Wait for new data to arrive
before reading USART

5

UART--Reading and Writing
char ReadUSART(void);

while (!DataRdyUSART()) /* busy wait*/;
firstCh = ReadUSART();
while (!DataRdyUSART()) /* busy wait*/;
nextCh = ReadUSART();

Wait for new data to arrive
before reading USART

Caution: In Lab 6, do not busy wait while waiting for
RS-232 input, as discussed last time in lecture

UART--Reading and Writing

void WriteUSART(char data);

WriteUSART(‘H’);
WriteUSART(‘e’);
WriteUSART(‘l’);
WriteUSART(‘l’);
WriteUSART(‘o’);
WriteUSART(‘ ’);
putrsUSART(“World”);

UART--Reading and Writing

void WriteUSART(char data);

WriteUSART(‘H’);
WriteUSART(‘e’);
WriteUSART(‘l’);
WriteUSART(‘l’);
WriteUSART(‘o’);
WriteUSART(‘ ’);
putrsUSART(“World”);

WriteUSART() doesn’t check
for Tx Buffer empty before
writing to the USART.

UART--Reading and Writing
while(BusyUSART()) ;
WriteUSART(‘H’);
while(BusyUSART()) ;
WriteUSART(‘e’);
while(BusyUSART()) ;
WriteUSART(‘l’);
while(BusyUSART()) ;
WriteUSART(‘l’);
while(BusyUSART()) ;
WriteUSART(‘o’);
while(BusyUSART()) ;
WriteUSART(‘ ’);
while(BusyUSART()) ;
putrsUSART(“World”);

Wait for USART Tx Buffer
to become empty before
writing another byte to it.

6

Minimizing Embedded System
Power Consumption

• Low power consumption is especially important
for:
– battery-powered applications
– heat-sensitive applications

• Some applications require battery-backup to
remain operational though power failures
– A “sleep mode” may be used to permit the system to

retain critical state information and data
• These days, power consumption is an issue for

all most all electronic devices
– e.g. Energy Star

Factors Contributing to IC Device
Power Consumption

• Supply voltage (Vdd)
– Lowering Vdd can dramatically decrease

power:
– e.g. for DS1305

• Vcc timekeeping supply current (Osc on):
= 81 uA at 5V
=25.3 uA at 2V

– Many devices have low-power versions
available that can operate with low Vdd

• e.g. PIC18LF452 can operate down to 2.0 V

Factors Contributing to IC Device
Power Consumption--Continued

• Clock Frequency
– Essentially a linear relationship between clock

frequency and power consumption
– Should use the lowest clock frequency suitable for the

application
• Considerations in selecting a clock frequency

– task execution time—e.g. interrupt service time
– timer resolution (tick rate)
– I/O speeds (RS-232, SPI, I2C)
– Others?

– A good low frequency clock source for a
microcontroller is a 32.768 KHz watch crystal (like the
one we are using for the DS1305 in Lab 6)

Factors Contributing to IC Device
Power Consumption--Continued

• I/O pins
– floating input pins can consume power
– unused I/O pins should be configured as outputs or

pulled high or low
• Device Features

– Generally speaking, the more features a device has,
the more power it consumes

– Should select microcontrollers and other devices with
the minimum feature set needed by your application

– Also, turn off features (modules) when they are not
needed

• Most PIC modules can be switched completely off—e.g.
ADC, MSSP, USART, …

7

Saving Power
• Sleep mode

– Many devices have an inactive (sleep) mode
in which the device consumes little power.

– Eg. PIC Microcontroller sleep mode
• Entered by executing a sleep instruction
• Puts the device into quiescent state

– turns off oscillator
– stops instruction execution

• Processor can be woken up by:
– reset operation
– watchdog timer
– certain interrupts

An Example

An ExampleBattery Backup An Example PIC Low-voltage Detect (LVD)
Can generate LVD when Vdd
drops below specified threshold

LVD ISR can put the PIC
into sleep mode

8

An Example

Timer 1 is driven by a
32.768 KHz Osc.

An Example

Timer 1 is driven by a
32.768 KHz Osc.

Timer1 roll-over will occur every 2 seconds.
Configure PIC to wakeup on Timer1 roll-over

An Example

Timer 1 is driven by a
32.768 KHz Osc.

Timer1 interrupt will occur every 2 seconds
Configure PIC to wakeup on Timer1 interrupt

PIC can update time of-day clock,
& check if LVD is still present.
If so, go back to sleep

Final Project
• Conducted during the last three weeks of class
• Assignment: Design and implement an

embedded application of your choosing
• Constraint: Your system must include at least

one of the following:
– Use of a PIC feature not used in previous labs—e.g.

CCP unit
– Use of a protocol not used in labs—e.g. I2C
– Use of a peripheral chip not used in lab

• Scope/complexity of your application must be at
least comparable to that of lab 5 and lab 6.

• Stretch yourselves--more points will be awarded
to more ambitious projects

9

Final Project
• Important Dates:

– Project proposals due on Tues, April 10
• Short (<1 page)
• Provide enough detail to allow me to assess the

scope and feasibility of your proposed design
– Project proposal must be approved, before you

can proceed with your project
• Proposals will be approved/declined by Thursday,

April 13
– Proposals may be submitted any time prior to

the deadline to expedite approval and ordering
of parts.

Final Project
• Important Dates:

– Project proposals due on Tues, April 10
• Short (<1 page)
• Provide enough detail to allow me to assess the

scope and feasibility of your proposed design
– Project proposal must be approved, before you

can proceed with your project
• Proposals will be approved/declined by Thursday,

April 12
– Proposals may be submitted any time prior to

the deadline to expedite approval and ordering
of parts.

Yep, that’s right—
One week from today

Final Project
• Important Dates (Continued):

– Project Report due date is Friday, May 4 by
5:00 p.m.

• Report format essentially same as for lab reports
• Make sure that you provide sufficient detail

regarding project specification and design.
– Last project demonstration/ sign-off date is

Thursday, May 3
– In-class presentations: T, May 1, Th, May 3
Note: There is no Pre-Lab requirement for

the Final Project

