Selected PHY topics from 4G wireless standards

Noah Jacobsen
LGS Innovations, Alcatel-Lucent
April 15, 2010
Introduction

• Pre-history: Ma-bell, Bell Labs R&D
• 1983 divestiture
• 1996 Lucent Technologies is formed
 – Equipment arm of ATT
 – Bell Labs goes with Lucent
• 2001 telecomm bubble is burst
• 2006 Alcatel-Lucent
• 2007 LGS Innovations is a wholly owned subsidiary of ALU (with congressional oversight) that does government facing R&D
Outline

• Overview of a protocol stack
• Overview of 4G standards
• Overview of PHY layer techniques of 4G systems
• Focus on two interesting PHY topics
 – Hybrid-ARQ
 – Cooperative relay coding
The OSI reference model (protocol stack)

<table>
<thead>
<tr>
<th>OSI Model</th>
<th>Data unit</th>
<th>Layer</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host layers</td>
<td>Data</td>
<td>7. Application</td>
<td>Network process to application</td>
</tr>
<tr>
<td></td>
<td>6. Presentation</td>
<td>Data representation, encryption and decryption</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Session</td>
<td>Interhost communication</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Segments</td>
<td>4. Transport</td>
<td>End-to-end connections and reliability, Flow control</td>
</tr>
<tr>
<td>Media layers</td>
<td>Packet</td>
<td>3. Network</td>
<td>Path determination and logical addressing</td>
</tr>
<tr>
<td></td>
<td>Frame</td>
<td>2. Data Link</td>
<td>Physical addressing</td>
</tr>
<tr>
<td></td>
<td>Bit</td>
<td>1. Physical</td>
<td>Media, signal and binary transmission</td>
</tr>
</tbody>
</table>
Functions and services performed by the Physical Layer

- Establishment and termination of a connection to a communications medium
- Participation in the process whereby the communication resources are effectively shared among multiple users
 - Contention resolution and flow control
- Modulation, or conversion between the representation of digital data in user equipment and the corresponding signals transmitted over a communications channel
 - Particularly signals operating over the physical cabling (such as copper and optical fiber) or over a radio link
Overview of 4G systems

- **LTE/3GPP, LTE-Advanced**
 - December 2009 TeliaSonera opens first available LTE service in Stockholm and Oslo
 - AT&T U.S. announces its rollout of LTE service for 2011

- **WiMax/IEEE 802.16**
 - “WiMax Mobile” modestly deployed worldwide
 - Harmonization with Europe and South Korea standards
 - Release 2 in 2011

- **UMB/3GPP2**
 - Qualcomm now favoring LTE
Overview of 4G PHY technology

• High data-rates for peak rate users
 – ~100 Mbps (Mega-bits-per-second) downlink
 – ~50 Mbps simultaneous uplink
 – How?

• Orthogonal Frequency Division Multiplexing (OFDM): de facto channelization technique

• Adaptive rate and power control techniques
 – Use of feedback to address time-varying radio propagation and interference environments

• Quadrature Amplitude Modulation (QAM): spectrally efficient digital modulation techniques—more bits per symbol
Overview of 4G PHY (continued)

- High-end Error Correcting Codes (ECCs) can efficiently correct errors introduced by the physical (radio) channel
 - We can “approach the capacity”
- Multi-antenna techniques: MIMO, beamforming
 - Increase the Signal-to-Noise Ratio (SNR) and/or number of parallel channels
- Cooperative communications
 - Multi-base station (macro-diversity)
 - Femto cells/Pico cells
 - Relays, cooperative terminals
Selected PHY topics

- **Hybrid-ARQ**
 - ACK/NACK feedback
 - Incremental redundancy, receiver combing
 - Rate-compatible codes

- **Cooperative relay coding**
 - Three terminal channels
 - More capacity (bits per second per Hz)
 - Optimize power emission behavior of network
Overview of H-ARQ

• Main idea: Minimize the energy per bit using re-transmissions
 – Mitigate uncertainty regarding the channel fading state using ACK/NACK style feedback

• ARQ (Automatic repeat request)
 – Error-control using ACKs

• Hybrid-ARQ (Type-II)
 – Re-transmissions contain incremental redundancy (more coded bits)
 – *Rate-compatible codes*: re-transmissions are segments of a larger code word
Overview of relays/cooperative communications

• Multi-terminal communication channel with sender, receiver, and cooperative terminals
• Cooperative communication protocols achieve rates beyond the non-cooperative (point-to-point) channel
• Rich history in the research literature and in practice
• Modern coding techniques approach the capacity of relay channels
 – Various levels of complexity/performance
 – Application of rate-compatible codes
Cooperative relay codes

- Relay protocols applicable to 4G systems and beyond
- Cooperative coding strategies are known to approach the capacity
 - Joint source and relay code book design (aka cooperative coding/ cooperative diversity)
- Specialization to the half-duplex case
 - Relay does not simultaneously receive and transmit in the same frequency band (TDD/FDD diplexing)
 - Avoids tx/rx “self-interference” problems
- Complexity considerations
 - Encoder/decoder complexity
 - Complexity of optimization/construction
 - Protocol/MAC complexity
- We discuss a practical cooperative coding strategy termed the TDMA relay code
 - Significant gains are demonstrated with the practical code
Half-duplex relay model

- Time-sharing parameter, α, between broadcast (BC) and multiple-access (MA) modes
- Power-sharing parameter, β, between BC and MA modes:
 - $P_{BC} = \beta P$
 - $P_{MA} = (1-\beta)P$
 - for total system power, P
Strategy 1: Decode-and-forward

- Relay decodes the source message and sends additional coded bits
 - Reliable source-relay link
- Baseline approach: independent (non-cooperative) coding on each link (multi-hop)
- Cooperative decode-and-forward
 - Relay encoder is cooperative with the source encoder
 - Distributed beamforming, dirty-paper coding, rate-compatible coding
Other strategies

Compress-and-forward
- Relay sends quantized version of the received symbol
- Reliable relay-destination link
- Gaussian quantization of relay received symbol
- Wyner quantization with decoder side-info

Amplify-and-forward
- Relay sends scaled version of received symbol
- Does not require a reliable s.-r. or r.-d. link
Decode-and-forward ach. rate (detail)

- Source message is delivered via $W_r = [W_{r1}, X_R]$ (relay codeword) and $W_d = [W_{d1}, W_{d2}]$ (direct codeword)
 - Overall rate $R_{DF} = R_r + R_d$
- In BC mode source sends both W_{d1} (for dest.) and W_{r1} (for relay)
- Relay decodes W_{r1} treating received W_{d1} as noise and encodes cooperative code symbol X_R for MA mode tx
- In MA mode, source sends both W_{d2} and relay symbol X_R
 - Relay symbol X_R from source and relay arrive phase coherent at receiver
- Receiver decodes W_r assuming received W_d is noise
- W_d is decoded after subtracting contribution due to W_r
Compress-and-forward ach. rate (detail)

Source message is delivered via W_r and W_d
- Overall rate $R_{CF} = R_r + R_d$

Relay sends quantized version of BC mode received symbol Y_R to destination as X_R

Source sends W_d directly in MA mode

Receiver decodes X_R assuming received W_d is noise

Receiver estimates relay received symbol from X_R and combines with direct (BC mode) received symbol to decode message W_r

Message W_d is decoded after subtracting contribution due to relay symbol
TDMA relay code design (proposed)

- Source is silent during MA mode
 - Time-division multiple access orthogonalization of source and relay signals
 - Receiver sees mixed SNR AWGN channel
- Application of rate-compatible codes
 - Consistent with ready-made rate-compatible codes
 - Optimized irregular codes are shown to approach the capacity
- Practical cooperative coding strategy
 - No requirement of phase-synchronous reception of source and relay symbols
 - No need for successive interference decoding
Channel model

- Relay position is modeled as co-linear with source and destination
- Path loss model:
 - Channel gain attenuates as d^{-p}
 - with path loss exponent p, $2 < p < 4$
- Our numerical evaluations assume $d=1/2$ and $p=3
Capacity numerical example
Observations

• The decode-and-forward achievable rate is shown to approach the max-flow min-cut capacity upper bound for the distance-half geometry
 – Phase coherent reception of the source and relay symbols
 – Successive interference decoding at receiver
• Decode-and-forward achievable rate dominates the alternative strategies
• Reduced-complexity code (TDMA relay code)
 – Source does not transmit MA mode symbol
 – Rate-compatible code structure
 – Minimal loss to best code
Conclusions

- 4G systems utilize a laundry list of impressive PHY technologies to provide next gen levels of performance
 - Question: is then wireless solved? What of 5G and beyond?
- A close look at a cooperative coding for relays
 - Cooperative codes are an active research subject
 - First cooperative relay to be included in a cellular standard
- Future study on relays/cooperative comm
 - De-centralized networks/sensor networks/large networks
 - Application of rate less codes in the context of cooperation?
 - Distributed interference planning/scheduling
- References
 - N. Jacobsen, *Practical cooperative coding for half-duplex relay channels*, CISS March 2009
 - N. Jacobsen and R. Soni, *Design of rate-compatible irregular LDPC codes based on edge growth and parity splitting*, VTC Fall 2007
- Contact
 - jacobsen@lgsinnovations.com