Selected PHY topics from 4G wireless standards

Noah Jacobsen LGS Innovations, Alcatel-Lucent April 15, 2010

Introduction

- Pre-history: Ma-bell, Bell Labs R&D
- 1983 divestiture
- 1996 Lucent Technologies is formed
 - Equipment arm of ATT
 - Bell Labs goes with Lucent
- 2001 telecomm bubble is burst
- 2006 Alcatel-Lucent
- 2007 LGS Innovations is a wholly owned subsidiary of ALU (with congressional oversight) that does government facing R&D

Outline

- Overview of a protocol stack
- Overview of 4G standards
- Overview of PHY layer techniques of 4G systems
- Focus on two interesting PHY topics
 - Hybrid-ARQ
 - Cooperative relay coding

The OSI reference model (protocol stack)

OSI Model			
	Data unit	Layer	Function
Host layers	Data	7. <u>Application</u>	Network process to application
		6. <u>Presentation</u>	Data representation, encryption and decryption
		5. <u>Session</u>	Interhost communication
	Segments	4. <u>Transport</u>	End-to-end connections and reliability, Flow control
Media layers	Packet	3. <u>Network</u>	Path determination and logical addressing
	Frame	2. <u>Data Link</u>	Physical addressing
	Bit	1. <u>Physical</u>	Media, signal and binary transmission

Functions and services performed by the Physical Layer

- Establishment and termination of a connection to a communications medium
- Participation in the process whereby the communication resources are effectively shared among multiple users
 - Contention resolution and flow control
- Modulation, or conversion between the representation of digital data in user equipment and the corresponding signals transmitted over a communications channel
 - Particularly signals operating over the physical cabling (such as copper and optical fiber) or over a radio link

Overview of 4G systems

- LTE/3GPP, LTE-Advanced
 - December 2009 TeliaSonera opens first available
 LTE service in Stockholm and Oslo
 - AT&T U.S. announces its rollout of LTE service for 2011
- WiMax/IEEE 802.16
 - "WiMax Mobile" modestly deployed worldwide
 - Harmonization with Europe and South Korea standards
 - Release 2 in 2011
- UMB/3GPP2
 - Qualcomm now favoring LTE

Overview of 4G PHY technology

- High data-rates for peak rate users
 - ~100 Mbps (Mega-bits-per-second) downlink
 - ~50 Mbps simultaneous uplink
 - How?
- Orthogonal Frequency Division Multiplexing (OFDM): de facto channelization technique
- Adaptive rate and power control techniques
 - Use of feedback to address time-varying radio propagation and interference environments
- Quadrature Amplitude Modulation (QAM): spectrally efficient digital modulation techniques—more bits per symbol

Overview of 4G PHY (continued)

 High-end Error Correcting Codes (ECCs) can efficiently correct errors introduced by the physical (radio) channel

- We can "approach the capacity"

- Multi-antenna techniques: MIMO, beamforming
 - Increase the Signal-to-Noise Ratio (SNR) and/or number of parallel channels
- Cooperative communications
 - Multi-base station (macro-diversity)
 - Femto cells/Pico cells
 - Relays, cooperative terminals

Selected PHY topics

Hybrid-ARQ

- ACK/NACK feedback
- Incremental redundancy, receiver combing
- Rate-compatible codes
- Cooperative relay coding
 - Three terminal channels
 - More capacity (bits per second per Hz)
 - Optimize power emission behavior of network

Overview of H-ARQ

- Main idea: Minimize the energy per bit using retransmissions
 - Mitigate uncertainty regarding the channel fading state using ACK/NACK style feedback
- ARQ (Automatic repeat request)

 Error-control using ACKs
- Hybrid-ARQ (Type-II)
 - Re-transmissions contain incremental redundancy (more coded bits)
 - Rate-compatible codes: re-transmissions are segments of a larger code word

Overview of relays/cooperative communications

- Multi-terminal communication channel with sender, receiver, and cooperative terminals
- Cooperative communication protocols achieve rates beyond the non-cooperative (point-to-point) channel
- Rich history in the research literature and in practice
- Modern coding techniques approach the capacity of relay channels
 - Various levels of complexity/performance
 - Application of rate-compatible codes

Cooperative relay codes

- Relay protocols applicable to 4G systems and beyond
- Cooperative coding strategies are known to approach the capacity
 - Joint source and relay code book design (aka cooperative coding/ cooperative diversity)
 - Specialization to the half-duplex case
 - Relay does not simultaneously receive and transmit in the same frequency band (TDD/FDD diplexing)
 - Avoids tx/rx "self-interference" problems
 - Complexity considerations

- Encoder/decoder complexity
- Complexity of optimization/construction
- Protocol/MAC complexity
- We discuss a practical cooperative coding strategy termed the TDMA relay code
 - Significant gains are demonstrated with the practical code

Half-duplex relay model

- Time-sharing parameter, α ,between broadcast (BC) and multiple-access (MA) modes
- Power-sharing parameter, β , between BC and MA modes:
 - $P_{\rm BC} = \beta P$,
 - $P_{\text{MA}} = (1-\beta)P$,
 - for total system power, P

Strategy 1: Decode-and-forward

- Relay decodes the source message and sends additional coded bits
 - Reliable source-relay link
- Baseline approach: independent (noncooperative) coding on each link (multi-hop)
- Cooperative decode-and-forward
 - Relay encoder is cooperative with the source encoder
 - Distributed beamforming, dirty-paper coding, ratecompatible coding

Other strategies

Compress-and-forward

- Relay sends quantized version of the received symbol
- Reliable relay-destination link
- Gaussian quantization of relay received symbol
- Wyner quantization with decoder side-info

Amplify-and-forward

- Relay sends scaled version of received symbol
- Does not require a reliable s.-r. or r.-d. link

Decode-and-forward ach. rate (detail)

• Source message is delivered via $W_r = [W_{r1}, X_R]$ (relay codeword) and $W_d = [W_{d1}, W_{d2}]$ (direct codeword)

- Overall rate $R_{\rm DF} = R_{\rm r} + R_{\rm d}$

- In BC mode source sends both W_{d1} (for dest.) and W_{r1} (for relay)
- Relay decodes W_{r1} treating received W_{d1} as noise and encodes cooperative code symbol X_R for MA mode tx
- In MA mode, source sends both W_{d2} and relay symbol X_{R}
 - Relay symbol $X_{\rm R}$ from source and relay arrive phase coherent at receiver
- Receiver decodes W_r assuming received W_d is noise
- $W_{\rm d}$ is decoded after subtracting contribution due to $W_{\rm r}$

Compress-and-forward ach. rate (detail)

• Source message is delivered via W_r and W_d

- Overall rate $R_{\rm CF} = R_{\rm r} + R_{\rm d}$

- Relay sends quantized version of BC mode received symbol $Y_{\rm R}$ to destination as $X_{\rm R}$
- Source sends W_d directly in MA mode
- Receiver decodes $X_{\rm R}$ assuming received $W_{\rm d}$ is noise
- Receiver estimates relay received symbol from X_R and combines with direct (BC mode) received symbol to decode message W_r
- Message $W_{\rm d}$ is decoded after subtracting contribution due to relay symbol

TDMA relay code design (proposed)

- Source is silent during MA mode
 - Time-division multiple access orthogonalization of source and relay signals
 - Receiver sees mixed SNR AWGN channel
- Application of rate-compatible codes
 - Consistent with ready-made rate-compatible codes
 - Optimized irregular codes are shown to approach the capacity
 - Practical cooperative coding strategy

- No requirement of phase-synchronous reception of source and relay symbols
- No need for successive interference decoding

Channel model

- Relay position is modeled as co-linear with source and destination
- Path loss model:

- Channel gain attenuates as d^{-p}
- with path loss exponent *p*, 2<*p*<4</p>
- Our numerical evaluations assume d=1/2 and p=3

Capacity numerical example

Observations

- The decode-and-forward achievable rate is shown to approach the max-flow min-cut capacity upper bound for the distance-half geometry
 - Phase coherent reception of the source and relay symbols
 - Successive interference decoding at receiver
- Decode-and-forward achievable rate dominates the alternative strategies
- Reduced-complexity code (TDMA relay code)
 - Source does not transmit MA mode symbol
 - Rate-compatible code structure
 - Minimal loss to best code

Conclusions

- 4G systems utilize a laundry list of impressive PHY technologies to provide next gen levels of performance
 - Question: is then wireless solved? What of 5G and beyond?
- A close look at a cooperative coding for relays
 - Cooperative codes are an active research subject
 - First cooperative relay to be included in a cellular standard
- Future study on relays/cooperative comm
 - De-centralized networks/sensor networks/large networks
 - Application of rate less codes in the context of cooperation?
 - Distributed interference planning/scheduling
- References
 - N. Jacobsen, Practical cooperative coding for half-duplex relay channels, CISS March 2009
 - N. Jacobsen and R. Soni, Design of rate-compatible irregular LDPC codes based on edge growth and parity splitting, VTC Fall 2007
- Contact
 - jacobsen@lgsinnovations.com