More on Input Distributions

Importance of Using the “Correct” Distribution

Replacing a distribution with its mean

• mean interarrival time = 1 minute
• mean service time = 0.99 minute

Case 1: Exponential interarrival and service times
(M/M/1 queue, assume actual system)
Long-run average number in queue ≈ 98

Case 2: Constant interarrival and service times
Average number in queue = 0

Conclusion: One must also capture the variability in the input processes.

Using the Wrong Distribution

• Single-server queueing system with exponential interarrival times
• Weibull, Exponential, Normal, and Lognormal distributions were fit to 200 observed service times (see histogram).

Histogram of Service-Time Data.

Best Fit

Density / histogram overplot for the service-time data.
Simulation Results Based on 100,000 Delays

<table>
<thead>
<tr>
<th>Service-time distribution</th>
<th>Average delay</th>
<th>Percentage error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weibull</td>
<td>4.36</td>
<td>–</td>
</tr>
<tr>
<td>exponential</td>
<td>6.71</td>
<td>53.9</td>
</tr>
<tr>
<td>normal</td>
<td>6.04</td>
<td>38.5</td>
</tr>
<tr>
<td>lognormal</td>
<td>7.19</td>
<td>64.9</td>
</tr>
</tbody>
</table>

*Best fit

Lab Session Summary

Lab Session Summary – Model Building

- Create Modules, Connect Modules to generate process flow
- Define attributes, TNOW
- Define Input arrival rates, service rates
- Define resource schedule rules
 - Shifts, breaks, failure frequency, expression builder.
- Define Project parameters
- Resource utilizations, queue length, time in queue
- Define run parameters
 - Run length, time units, replications
- Define animation parameters
- Run simulation
- Generate Reports

Output Analysis

Lab Session Summary

What We'll Do ...

- Time frame of simulations
- Strategy for data collection and analysis
- Confidence intervals
- Comparing two alternatives
- Comparing many alternatives via the Arena Process Analyzer (PAN)
- Searching for an optimal alternative with OptQuesty

Types of Statistics Reported

- Many output statistics are one of three types:
 - **Tally** – avg., max, min of a discrete list of numbers
 - Used for discrete-time output processes like waiting times in queue, total times in system
 - **Time-persistent** – time-average, max, min of a plot of something where the x-axis is continuous time
 - Used for continuous-time output processes like queue lengths, WIP, server-busy functions (for utilizations)
 - **Counter** – accumulated sums of something, usually just counts of how many times something happened
 - Often used to count entities passing through a point in the model
Introduction

- Random input leads to random output (RIRO)
- Run a simulation (once) — what does it mean?
 - Was this run "typical" or not?
 - Variability from run to run (of the same model)?
- Need statistical analysis of output data
 - From a single model configuration
 - Compare two or more different configurations
 - Search for an optimal configuration
- Statistical analysis of output is often ignored
 - This is a big mistake — no idea of precision of results

Time Frame of Simulations

- Terminating: Specific starting, stopping conditions
 - Run length will be well-defined (and finite; known starting and stopping conditions)
- Steady-state: Long-run (technically forever)
 - Theoretically, initial conditions don't matter (but practically they usually do)
 - Not clear how to terminate a simulation run (theoretically infinite)
 - Interested in system response over long period of time
 - This is really a question of intent of the study
 - Has major impact on how output analysis is done
 - Sometimes it's not clear which is appropriate

Strategy for Data Collection and Analysis

- For terminating case, make IID replications
 - Run > Setup > Replication Parameters: Number of Replications field
 - Check both boxes for Initialize Between Replications
- Separate results for each replication — Category by Replication report
- Model 5-2, Daily Profit, Daily Late Wait Jobs; 10 replications

Strategy for Data Collection and Analysis (cont'd.)

- The confidence level of simulation output drawn from a set of simulation runs depends on the size of data set.
 - The larger the number of runs, the higher is the associated confidence.
 - However, more simulation runs also require more effort and resources for large systems.
 - Thus, the main goal must be in finding the smallest number of simulation runs that will provide the desirable confidence.

How Many Replications?

- Category Overview report will have some statistical-analysis results of the output across the replications
- Turn off animation altogether for max speed
 - Run > Run Control > Batch Run (No Animation)

Confidence Intervals for Terminating Systems

- Replication summary outputs as the basic data:
 - Sample Mean
 - Sample Standard Deviation
 - 95% Confidence Interval Express
 - Minimum Value
 - Maximum Value
- Possibly most useful part — 95% confidence interval on expected values
- This information (except standard deviation) is in Category Overview report
- One way to reduce the half-width of CI is to increase \(n \), the sample size (in this case the number of replications)
Half Width and Number of Replications

- Prefer smaller confidence intervals — precision
- Notation: \(n \) = no. replications
 \(\bar{X} \) = sample mean
 \(s \) = sample standard deviation
 \(t_{a/2, n-1} \) = critical value from \(t \) tables
- Confidence interval: \(\bar{X} \pm t_{a/2, n-1} \frac{s}{\sqrt{n}} \)
- Half-width = \(t_{a/2, n-1} \frac{s}{\sqrt{n}} \)
- Can't control \(t \) or \(s \)
- Must increase \(n \) — how much?

Half Width and Number of Replications (cont'd.)

- Set half-width = \(h_0 \), solve for \(n \): \(\frac{t_{a/2, n-1} s}{h_0} = \frac{z}{\sqrt{n}} \)
- Not really solved for \(n \) (\(t \), \(s \) depend on \(n \))
- Approximation:
 - Replace \(t \) by \(z \), corresponding normal critical value
 - Pretend that current \(s \) will hold for larger samples
 - Get \(n \approx \frac{z^2 s^2}{h_0^2} \)
 - Easier but different approximation:
 \(n \approx \frac{z^2 s^2}{h^2} \) (\(n \) grows quadratically as \(h \) decreases)

Interpretation of Confidence Intervals

- Interval with random (data-dependent) endpoints that's supposed to have stated probability of containing, or covering, the expected value
 - “Target” expected value is a fixed, unknown number
 - Expected value = average of infinite number of replications
- Not an interval that contains, say, 95% of the data
 - That's a prediction interval ... useful too, but different
- Usual formulas assume normally-distributed data
 - Never true in simulation
 - Might be approximately true if output is an average, rather than an extreme
 - Central limit theorem

Finding the Best System
(Comparing Alternative Solutions)

Introduction

- Simulations are typically performed to compare two or more alternate solutions
 - Consider comparisons among a small number of systems (say 2 to 30)
 - The method that is appropriate depends on the type of comparison desired and properties of the output data
 - Consider situations when there is no known functional relationship among alternative systems
Comparing Two Systems

Example: We evaluate two different “re-start” strategies that an airline can evoke following a major traffic disruption, e.g., a snowstorm in the Northeast. We want to minimize a certain cost function associated with the re-start.

- $X_i =$ cost from i^{th} run of strategy 1. Assume:
 - X_1, X_2, \ldots, X_n i.i.d. normal with unknown mean μ_X and unknown variance.
- $Y_i =$ cost from i^{th} run of strategy 2. Assume:
 - Y_1, Y_2, \ldots, Y_m i.i.d. normal with unknown mean μ_Y and unknown variance.

Goal: Obtain confidence interval for $\mu_X - \mu_Y$.

Two Systems (cont'd)

- How can we justify these assumptions?
 - Independent data by controlling random numbers between replications.
 - Identically distributed by performing replications under identical conditions.
 - Normally distributed data (since we add up many sub-costs to get overall costs for both strategies).

Paired t-Test

- $H_0 = \mu_X - \mu_Y = 0$
- Take n observations from both strategies
- Set $D_i = X_i - Y_i$ for $i = 1, 2, \ldots, n$

$100(1-\alpha)%$ confidence interval:

$$\mu_X - \mu_Y \pm t_{1-\alpha/2, n-1} \sqrt{S_D^2/n + S_Y^2/m}$$

Paired t-Test Cont...

- Find the CI
- IF CI includes 0, H_0 is true. (Improved system is not better!)
 - $n_X \neq n_Y$
 - $n_X \neq n_Y$

Strong evidence that $\mu_X < \mu_Y$ System Y is better than X

Weak evidence that one system is better than the other

Strong evidence that $\mu_X > \mu_Y$ System X is better than Y

Modified t-Test (Welch Approach)

- Does not pair observations
- $n_X \neq n_Y$

- $n_X \neq n_Y$

$N_X = \frac{1}{n} \sum X_i$ and $N_Y = \frac{1}{m} \sum Y_i$ (Sample mean of X_i and Y_i)

$S_X^2 = \frac{1}{n-1} \sum (X_i - N_X)^2$ (Sample variance of X_i)

$S_Y^2 = \frac{1}{m-1} \sum (Y_i - N_Y)^2$ (Sample variance of Y_i)

Modified t-Test (Welch Approach) Cont...

- $100(1-\alpha)%$ confidence interval:

$$\mu_X - \mu_Y \pm t_{1-\alpha/2, \nu} \sqrt{\frac{S_X^2}{n} + \frac{S_Y^2}{m}}$$

Where

$$\nu = \frac{(S_X^2/n + S_Y^2/m)^2}{\frac{S_X^4}{n(n-1)} + \frac{S_Y^4}{m(m-1)}}$$
Comparing Two Alternatives

- Usually compare alternative system scenarios, configurations, layouts, sensitivity analysis
- Model 6-3
 - Model 6-1, but add file Daily Profit.dat to Statistic module, Output column, Daily Profit row
 - Saves this output statistic to this file for each replication
- Two versions
 - Base case – all inputs as originally defined
 - More-bookings case – Change Max Load from 24 to 28 hours
 (allow more bookings per day ... increase utilization, profit? Maybe)

Reasonable but not-quite-right idea

- Make confidence intervals on expected outputs from each alternative, see if they overlap
- Base case: 492.63 ± 13.81, or $[478.82, 506.44]$
 - More-bookings case: 564.53 ± 22.59, or $[541.94, 587.12]$
- But this doesn’t allow for a precise, efficient statistical conclusion

Compare Means via the Output Analyzer

- Output Analyzer is a separate application that operates on .dat files produced by Arena
 - Launch separately from Windows, not from Arena
- To save output values (Expressions) of entries in Statistic data module (Type = Output) – enter filename.dat in Output File column
 - Just did for Daily Profit, not Daily Late Wait Jobs
 - Will overwrite this file name next time … either change the name here or out in Windows before the next run
- .dat files are binary … can only be read by Output Analyzer

Results:

- Confidence interval on difference misses 0, so conclude that there is a (statistically) significant difference

Evaluating Many Alternatives (K > 2)

- Hypothesis Tests. Of course, it is well known that we will eventually reject $H_0: \mu_1 = \cdots = \mu_k$ if the sample size is large enough.
- Simultaneous Confidence Intervals
 - Bonferroni
 - Tukey-Kramer
- Ranking and Selection Procedures
- Multiple Comparison Procedures
R&S selects the best system, or a subset of systems that includes the best.
- Guarantee probability of correct selection.

MCPs treat the comparison problem as an inference problem.
- Account for simultaneous errors.

Both are relevant in simulation:
- Normally distributed data by batching.
- Independence by controlling random numbers.
- Multiple-stage sampling by retaining seeds.

Form simultaneous CI for \(\mu_i - \mu_j \) for all \(i \neq j \)

Systems are simulated independently

\(Y_{ij} \) i.i.d. outputs \(Y_{i1}, \ldots, Y_{in} \)

\[\bar{Y}_i = \frac{1}{n_i} \sum_{j=1}^{n_i} Y_{ij} \] (Sample mean \(Y_i \))

\[S^2 = \frac{1}{n-1} \sum_{i=1}^{k} \left(\frac{1}{n_i} - 1 \right) \left(\frac{1}{n_i} \sum_{j=1}^{n_i} Y_{ij} - \bar{Y}_i \right)^2 \] (Sample variance of \(Y_i \))

Tukey's simultaneous confidence interval's are:

\[\bar{Y}_i - \bar{Y}_j \pm t \sqrt{\frac{S^2}{n_i} + \frac{S^2}{n_j}} \]

where \(t = t_{\nu, \alpha} \) for any values of the \(n_i \)

\[\nu = \frac{\nu^2}{\nu + k \sum_{i=1}^{k} (n_i - 1)} \]

Coverage \(\geq 1 - \alpha \) for any values of the \(n_i \)

Example

Compare 4 alternate designs for the architecture of a new computer system. Response time is the performance measure of interest. Smaller response time is preferred.

- For each architecture we take \(n = 6 \) replications
- Following is the summary data:

<table>
<thead>
<tr>
<th>Y1</th>
<th>Y2</th>
<th>Y3</th>
<th>Y4</th>
<th>S^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>72</td>
<td>85</td>
<td>76</td>
<td>62</td>
<td>100.9</td>
</tr>
</tbody>
</table>

Determine, with confidence 0.95, bounds on the difference between the expected response time of each architecture.

\[t = 3.96 \text{ from the } t \text{- table} \]

For instance, a CI for \(\mu_1 - \mu_4 \) is 85 - 62 \(\pm 16 \) or, 23 \(\pm 16 \) milliseconds.

Since this CI does not contain 0, and since shorter response time is Better, we can screen out architecture 2 for further consideration!
PAN Scenarios

A scenario in PAN is a combination of:
- A program (.p) file
- Set of input controls that you choose
 - Chosen from Variables and Resource capacities – think ahead
 - You fill in specific numerical values
- Set of output responses that you choose
 - Chosen from automatic Arena outputs or your own Variables
 - Values initially empty … to be filled in after run(s)
- To create a new scenario in PAN, double-click where indicated, get Scenario Properties dialog
 - Specify Name, Tool Tip Text, .p file, controls, responses
 - Values of controls initially as in the model, but you can change them in PAN – this is the real utility of PAN
- Duplicate (right-click, Duplicate) scenarios, then edit for a new one
- Think of a scenario as a row

PAN Projects and Runs

A project in PAN is a collection of scenarios
- Program files can be the same .p file, or .p files from different model .doe files
- Controls, responses can be the same or differ across scenarios in a project – usually will be mostly the same
- Think of a project as a collection of scenario rows – a table
- Can save as a PAN (.pan extension) file

Select scenarios in project to run (maybe all)
PAN runs selected models with specified controls
PAN fills in output-response values in table
- Equivalent to setting-up, running them all “by hand” but much easier, faster, less error-prone

Model 6-4 for PAN Experiments

Same as Model 6-3 except remove Output File entry in Statistic module
- PAN will keep track of outputs itself, so this is faster

Controls – set up a formal 2^3 factorial experiment
- 2^3 = 8 Scenarios
- Also do Base Case

<table>
<thead>
<tr>
<th>Control (factor)</th>
<th>Low Level</th>
<th>High Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Load</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>Max Wait</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Wait Allowance</td>
<td>0.5</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Running Model 6-4 with PAN

- Scenarios
 - Select all to run (click on left of row, Ctrl-Click or Shift-Click for more)
 - To execute, Run > Go or F5

Statistical Comparisons with PAN

- Model 6-4 alternatives were made with 100 replications each
 - Better than one replication, but what about statistical validity of comparisons, selection of “the best”?
- Select Total Cost column, Insert > Chart (or right-click on column, then Insert Chart)
 - Chart Type: Box and Whisker
 - Next, Total Cost; Next defaults
 - Next, Identify Best Scenarios
 - Bigger is Better, Error Tolerance = 0 (not the default)
 - Show Best Scenarios; Finish

Statistical Comparisons with PAN (cont’d)

- Vertical boxes: 95% confidence intervals
- Red scenarios statistically significantly better than blues
- More precisely, red scenarios are 99% sure to contain the best one
- Narrow down red set — more replications, or Error Tolerance > 0
- More details in book
A Follow-Up PAN Experiment

- From 2^2 factorial experiment, it's clear that Max Load matters the most, and bigger appears better
 - It's factor 1, varying between “-” and “+” in each scenario as ordered there, creating clear down/up/down/up pattern
 - Could also see this by computing main effects estimates
 - Consult an experimental-design text
- Eliminate other two factors (fix them at their base-case levels) and study Max Load alone
 - Let it be 20, 22, 24, ..., 40
 - Set up a second PAN experiment to do this, treated chart as before

A Follow-Up PAN Experiment (cont'd.)

- Here, profit-maximizing Max Load is about 30
- But Daily Late Wait Jobs keeps increasing (worsening) as Max Load increases
 - At profit-maximizing Max Load = 30, it's 0.908 job/day, which seems bad since we only take 5 wait jobs/day
 - Would like to require that it be at most 0.75 job/day ... still want to maximize Daily Profit
- Allow other two factors back into the picture ...

Searching for an Optimal Alternative with OptQuest

- The scenarios we've considered with PAN are just a few of many possibilities
- Seek input controls maximizing Daily Profit while keeping Daily Late Wait Jobs ≤ 0.75
- Formulate as an optimization problem:
 - Maximize Daily Profit
 - Subject to 20 ≤ Max Load ≤ 40
 - 1 ≤ Max Wait ≤ 7
 - 0.5 ≤ Wait Allowance ≤ 2.0
 - Daily Late Wait Jobs < 0.75
- Reasonable starting place – best acceptable scenario so far (the base case, actually)
 - Where to go from here? Explore all of feasible three-dimensional space exhaustively? No.

OptQuest

- OptQuest searches intelligently for an optimum
 - Like PAN, OptQuest
 - Runs as a separate application ... can be launched from Arena
 - “Takes over” the running of your model
 - Allows you to specify the input controls and the output (just one) response objective
 - Unlike PAN, OptQuest
 - Allows you to specify constraints on the input controls
 - Allows you to specify requirements on outputs
 - Decides itself what input-control-value combinations to try
 - Uses internal heuristic algorithms to decide how to change the input controls to move toward an optimum configuration
- You specify stopping criterion for the search

Using OptQuest

- Tools > OptQuest for Arena
 - New session (File > New or Ctrl+N or)
 - Make sure the desired model window is active
 - Select controls – Variables, Resource levels
 - Max Load, Lower Bound = 20, Upper Bound = 40, Conts.
 - Max Wait, Lower Bound = 1, Upper Bound = 7, Discrete (Input Step Size 1)
 - Wait Allowance, Lower Bound = 0.5, Upper Bound = 2, Conts.
 - Constraints—none here other than earlier Bounds
 - Objective and Requirement
 - Daily Profit: Response – Select Maximize Objective
 - Daily Late Wait Jobs: Response – Select Requirement, enter 0.75 for Upper Bound

Using OptQuest (cont'd.)

- Options window – computational limits, procedures
 - Time tab – run for 20 minutes
 - Precision tab – vary number of replications from 10 to 100
 - Preferences tab – various settings (accept defaults)
- Can revisit Controls, Constraints, Objective and Requirements, or Options windows via
- Run via wizard (first time through a new project), or Run > Start or
- View > Status and Solutions and
 - View > Performance Graph to watch progress
 - Can't absolutely guarantee a true optimum
 - Usually finds far better configuration than possible by hand