Errata Sheet for

S. D. Rajan, Introduction to Structural Analysis & Design (1st Edition)

John Wiley & Sons Publication

) lb.
k/ft.
i
lence erse.
rly
hear 9 psi rom
f top oss-
·
19.0(-
0°
- 24
f o

	101	1
3	181	Equation (E3.7.3a) change $\mathbf{s}_{\text{max}} = \frac{3wL^2}{4b^2}$ to $\mathbf{s}_{\text{max}} = \frac{3wL^2}{4b^3}$.
3	182	2 sentence above Fig. E3.7.3(b), change $V = 200,169 in^3$ to $V = 20,169 in^3$.
3	182	Last sentence, change $b = 1008.45/4h^2$ to $b = 1008.45/4b^2$.
3	183	2 sentence above Observation, change $V = 20,088in^3$ to $V = 20,169in^3$.
3	186	Eqn. (E3.7.4b) should read $r_i = \sqrt{\frac{P}{10.56 \mathbf{p}}}$ not $r_i = \sqrt{\frac{P}{15.36 \mathbf{p}}}$.
4	192	Second paragraph, last sentence. Delete the first occurrence of the word "used".
4	226	Third paragraph starting with "The computation". "The virtual unit load is applied at A." should read "The virtual unit load is applied at C."
4	230	In Fig. E4.5.2(b), the vertical reaction at A is shown to indicate that in a later step its value will be used. The correct direction for the reaction in the SVL is downwards not upwards.
4	231	For segment AB, in FBD(SVL), the reaction at A should be 0.1 not 0.5.
4	234	External Loads . "Let us assume that is" should read "Let us assume that it is"
4	234	External Loads . "let the force in a typical member by N." should read "let the force in a typical member be N."
4	237	Example 4.5.5 . Step 1. "is the fabrication" should read "is the fabrication error". Step 2. "On can imagine" should read "One can imagine"
4	240	Problem 4.5.14. The problem statement should read $I_{BC} = 2I_{AB} = 2I$ not $I_{BC} = I_{AB} = 2I$.
5	255	Step 2. In the table, the FBD for segment DB has an error. The reaction at A labeled 130 should act upwards not downwards.
5	261	Problem 5.1.5 . The roller support should be labeled B not A.
5	266	In the equation for $(\Delta_D)_x$ the moment expression in the first term should read $-x^2$ not $-\frac{x^2}{2}$. In the next line, Δ_C should actually be $(\Delta D)_x$.
5	266	Step 4. Equation should be moments about C not A.
5	267	Fig. E5.1.7(e). Bending moment at B should be 38.5 not 31.5.
5	271	Second paragraph, Second sentence: Instead of "We now examine" read "We now examine such a truss (simplified with joint E removed) in greater detail."
5	271	In Fig. 5.1.3.2(b), remove the vertical concentrated force acting at A.
5	277	Problem 5.1.21. The load should be 10 kN not 10 k.
5	279	Problem 5.1.26: The truss joint symbols are missing at joints B and J.
5	283	In Fig. 5.1.4.6(b), remove the horizontal concentrated force acting at A.
5	286	The second term in the expression for $\mathbf{a}_{A\hat{B}}$ should be $-\frac{x_1}{6}$ not $\frac{x_1}{6}$.
-		

	Step 4. Second Equation. The term multiplying M_A should be (9/4EI) not (9/EI).
290	The limits of the integral for q_B are from b to L and not from 0 to L.
300	General Procedure. Step 3. The figure number should be 5.2.1.1 not 5.2.11.
314	In FBD IV, the direction of V_{B1} should be down not up.
323	The label B_x in FBD of member BC (top of page) should read \hat{B}_x since this force changes between the FBD for AB and FBD for BC.
327	At the bottom of the page: "From the FBD of beam BD, we have" should be
	followed by $\sum_{B} M_B = 0$ not $\sum_{B} M_D = 0$.
328	Problem 5.2.3 . Without a roller support at B, the problem is exactly the same as Problem 5.6. Introduce a roller support at B.
331	Problem 5.2.14. Write the two Slope-Deflection equations for M_{AB} and M_{BA}
	as usual simplify the equation for M_{AB} .
332	Problem 5.3 . The support at D should be a roller support capable of moving horizontally.
333	Problem 5.6 . Dimensions are missing. Take the dimensions to be the same as
	those used in Problem 5.2.3, i.e. each span is 5 m.
337	Eqn. (6.1.1.1) should have $A_{m \times n}$ not $A_{m \times x}$.
338	In the definition of the upper triangular matrix, change $i < j$ to $i > j$.
	In the definition of the lower triangular matrix, change $i > j$ to $i < j$.
344	Fig. 6.2.1.4. The displacements (degrees-of-freedom) should be labeled D_1 , D_2 and D_3 .
346	Problem 6.2.1 . The applied load should be 20 lb not 20 lb/in.
353	In the line to the right of the word SOLUTION , change "see page 362" to "see page 350".
356	Step 4: D3 should be -4.44367e-3 not 4.44367e-3.
360	Problem 6.2.2: The truss joint symbol is missing at joint 1.
360	Problem 6.2.3 : The truss joint symbol is missing at joint 4.
368	The label in Fig. 6.2.3.9(a) should be w not W.
370	Element 1 Stiffness: The signs of the entries in locations (2,6), (6,2), (5,6) and
	(6,5) need to be reversed.
371	Element 2 Stiffness: The signs of the entries in locations (2,6), (6,2), (5,6) and
274	(6,5) need to be reversed.
	Element 1 Stiffness: The signs of the entries in locations (2,6), (6,2), (5,6) and (6,5) need to be reversed
	(6,5) need to be reversed. Element 3 Stiffness: The signs of the entries in locations (2,6), (6,2), (5,6) and
313	(6,5) need to be reversed.
377	Renumber all the problems in this Exercise by decreasing the problem
	number by one - the problems are from 6.2.13 through 6.2.20 NOT 6.2.14 through 6.2.21.
	300 314 323 327 328 331 332 333 337 338 344 346 353 356 360 360 368 370 and 371 374 and 375

6	381	Example 6.3.1 . The left side of the second equation in the solution should read U not U_0 .
6	397	Eqn. (6.4.2.16). The entry at row 1, column 4 should be $-\frac{EA}{L}$ not 0.
6	399	Example 6.4.3. The element load for element 1 should read
		$q_{6\times 1} = \{0 -15000 -25000 0 -15000 25000\}$
6	419	Eqn. (6.5.2.2) The second term in the parenthesis should read $+c_jD_j$ not $-c_jD_j$. The same correction should be made to the expression shown on the first line following Fig. 6.5.2.1.
6	424	The 87 k reaction at the second node in Fig. E6.5.4(c) should be acting downwards not upwards. The 411.4 k-ft moment reaction should be counterclockwise not clockwise.
7	446	Member cross-sectional properties: Delete the contents within the parenthesis "(the rough 6 mm)". and change the Area to 0.8 m² and the Moment of inertia to 0.7 m⁴. Make the corrections as a result of this on the output shown on page 448.
7	447	Element Data Table. There is NO element 2. Delete the second row in the table.
8	505	Example 8.3.1. Make the following corrections. $\frac{\partial L}{\partial x_1} = 0 = 4 + 4 \boldsymbol{I}_1 x_1 \Rightarrow x_1 = -\frac{1}{\boldsymbol{I}_1}.$ $\boldsymbol{I}_1 = \frac{3}{2} : x_1^* = -\frac{2}{3} : x_2^* = \frac{1}{3} : f(x^*) = -3$ $\boldsymbol{I}_1 = -\frac{3}{2} : x_1^* = \frac{2}{3} : x_2^* = -\frac{1}{3} : f(x^*) = 3.$ The final solution is as follows: $x_1^* = -2/3, x_2^* = 1/3, f(x^*) = -3$.
8	512	Table on top of page. The Decimal value associated with Binary 001 should be 2.28571 not 2.25571.
8	515	Third line. " point in chosen." should read " point is chosen."
8	522	The solution presented is incorrect. Change the upper bounds to 50 (instead of 20). The final result is $h=36.5$ cm and $f(\mathbf{x}) = 7327$ cm ³ .
8	529	Fig. 8.7.1. The truss on the top right is incorrect. Its (member arrangement) should be exactly the same as the truss on the top left.
8	535	Fig. 8.7.4.1: Label the element between C and E as 9 not 7.
8	557	The material should be 0.2% HR steel.
8	563	Problem 8.8.5 and Problem 8.8.6 . The material should be 0.2% HR steel.
Answers	643	Problem 1.1(c). The answer should be 1.1229(10 ⁻⁶)slug/in ³ not the value of a
to		force.
Selected		
Problems		

	644	Problem 2.7.8 . Change $F_{HC} = F_{FC} = 2250.6 \text{ lb}(T)$ to $F_{HG} = F_{FG} = 2250.6 \text{ lb}(T)$
	645	Problem 2.8.18 . Change the shear force at B from -7.72 to -7.22.
	645	Problem 2.8.21 . The curvatures shown in the moment diagram should be
		opposite of what are shown in the figure.
	645	Problem 4.3.7 . Both the rotations are clockwise.
	649	Problem 3.6 . The required inner radius is 0.71 in with a wall thickness of
		0.11 in.
	650	Problem 5.1.16. The reaction labeled C_y should actually be D_y .
	651	Problem 5.2.12 : M _{CD} should be -136.3 k-ft.
	654	The solution labeled 6.2.18 should actually read 6.2.19.
	654	The solution labeled 6.2.19 should actually read 6.2.20.
	664	The unit for Area is in ² not in ³ .
	and	
	665	
	679	In section d. the second derivative of the cubic function should read
		$f''(x) = 6ax + 2b \text{ not } f''(x) = 6ax^2 + 2b.$
Appendix	679	The line types (light solid and dashed lines) for the first and the second graphs
E		are switched.
Inside		The formula for the fixed-end moments for a concentrated load should read
back		Pa^2h
Cover		$FEM_{BA} = \frac{Pa^2b}{L^2}$. The figure has the right expression.
Inside		Area of the pipe should read $A = pt(t+2r)$. Make the same correction in
Front		Appendix B.
Cover		Appendix B.
First Page		The rotation at B on the cantilever beam with the UDL should read $\mathbf{q}_B = \frac{wL^3}{3EI}$
		$not \ \mathbf{q}_B = \frac{wL^2}{3EI}.$
Inside		The formulae for the moment of inertia of the rectangular hollow tube section
Front		account only for the outer rectangle. The contribution from the inner rectangle
Cover		needs to be subtracted. Make the same correction in Appendix B.
		$I_{x} = \frac{1}{12} \Big[(b+2t)(h+2w)^{3} - bh^{3} \Big] \qquad S_{x} = \frac{I_{x}}{0.5h+w}$ $I_{y} = \frac{1}{12} \Big[(h+2w)(b+2t)^{3} - hb^{3} \Big] \qquad S_{y} = \frac{I_{y}}{0.5h+t}$
		$I_y = \frac{1}{12} \Big[(h+2w)(b+2t)^3 - hb^3 \Big] $ $S_y = \frac{I_y}{0.5h+t}$