Design W14 shapes for the members of the lowest story of a single-bay multistory unbraced frame, part of which is shown below (the frame is indeterminate to one degree). The axial compression $P$ is the total load acting on the bottom story columns and the wind load $H$ is the total horizontal service wind load acting at point B for the entire frame. The steel is A992 ($F_y = 50$ ksi, $E = 29000$ ksi). Assume same section for columns AB and DC. Also assume that the columns of the second story have same section as for the first story.

Carry out at least one iteration of the design cycle. If you make any other assumptions in your work, state them clearly.

Design W14 shapes for the members of the lowest story of a single-bay multistory unbraced frame, part of which is shown below (the frame is indeterminate to one degree). The axial compression $P$ is the total load acting on the bottom story columns and the wind load $H$ is the total horizontal service wind load acting at point B for the entire frame. The steel is A992 ($F_y = 50$ ksi, $E = 29000$ ksi). Assume same section for columns AB and DC. Also assume that the columns of the second story have same section as for the first story.

Carry out at least one iteration of the design cycle. If you make any other assumptions in your work, state them clearly.

Design W14 shapes for the members of the lowest story of a single-bay multistory unbraced frame, part of which is shown below (the frame is indeterminate to one degree). The axial compression $P$ is the total load acting on the bottom story columns and the wind load $H$ is the total horizontal service wind load acting at point B for the entire frame. The steel is A992 ($F_y = 50$ ksi, $E = 29000$ ksi). Assume same section for columns AB and DC. Also assume that the columns of the second story have same section as for the first story.

Carry out at least one iteration of the design cycle. If you make any other assumptions in your work, state them clearly.