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Design of Compression Members 
(Part 4 of AISC/LRFD) 

 

 
 
Euler Buckling of Columns 
 
Global buckling of a member happens when the member in 
compression becomes unstable due to its slenderness and load. 
Buckling can be elastic (longer thin members) or inelastic (shorter 
members). Here we shall derive the Euler buckling (critical) load for 
an elastic column. 
 
Consider a long and slender compression member (hinged) as shown 
in the figure above. The Euler buckling formula is derived for an ideal 
or perfect case, where it is assumed that the column is long, slender, 
straight, homogeneous, elastic, and is subjected to concentric axial 
compressive loads. The differential equation for the lateral 
displacement v is given as: 
 

J.S. Arora/Q. Wang  CompresionDesign.doc 1



53:134 Structural Design II 

PvM
dx

vdEI −==2

2
 

 
where E is the modulus of elasticity, I is the moment of inertia about 
the axis of bending in the cross section, P is the axial compressive 
force, and M is the bending moment at a distance x from support A. If 
we consider the column to be at the point of buckling, we have 
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This is a second-order homogeneous linear differential equation with 
constant coefficients. The boundary conditions for the problem are 
also homogeneous as 
 
 ( ) ( ) 0and00 == Lvv  
 
The solution of the differential equation is  
 

kxCkxCv sincos 21 +=  
 
The integration constants  and  can be found by applying the 
following geometric boundary conditions: 
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At x = 0: 00 1 =→= Cv  
At x = L: 00 2 =→= kLsinCv  

 
The above equation indicates that either  = 0, which means no 
lateral displacement at all, or 
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Various values of n correspond to different buckling loads. When 

, the smallest value obtained is known as critical load, buckling 
load, or Euler formula: 
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Note that the critical buckling load is independent of the strength of 
the material (say, , the yield stress). This equation was obtained for 
a column with hinged ends. The equation can be used for columns 
with other end conditions, as follows: 
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where KL is the distance between the points of zero moment, or 
inflection points along the length. The length KL is known as the 
effective length of the column. The dimensionless coefficient K is 
called the effective length factor.  
 
Dividing the critical load  by the cross-sectional area of the 

column A, we can find the critical stress , as 
crP

crF
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where r is the radius of gyration of the cross section about the axis of 
bending ( 2ArI = ) and KL/r is called the slenderness ratio of the 
column. A thin column has small radius of gyration and a stocky 
column has large radius of gyration. The slenderness ratio determines 
elastic or inelastic mode of buckling failure. Columns with small 
slenderness ratios are called short columns.  
 

♦ Short columns (small KL/r) do not buckle and simply fail by 
material yielding.  
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♦ Long columns (large KL/r) usually fail by elastic buckling 

mentioned above.  
 

♦ Between short and long regions, the failure of the column 
occurs through inelastic buckling. 

 
The figure shows the three types of failure modes for a column. 

 
 
If we define a slenderness parameter as ( )cryc F/F=2λ  
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Then the equation of the critical stress is crF
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Note that 1≥cλ .  
 
Notations: 
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cφ  Resistance factor for compression (0.85) 

gA  Gross cross-sectional area  

yF  Specified minimum yield stress 

nP  Nominal axial strength of the section 

uP  Required axial strength 
E  Modulus of elasticity 
K  Effective length factor  
L  Lateral unbraced length of the member 
r  Governing radius of gyration  
 
 
Design Strength:  
 

ncPφ  for compression members based on buckling failure mode 
 

♦ The critical load is given as  
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♦ Buckling can take place about the strong (x) axis or the weak 
(y) axis. 

♦ Larger value for KL/r will give smaller critical load, and thus 
will govern the design strength. Define 
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Lx = unbraced length for bending about the strong axis 
Ly = unbraced length for bending about the weak axis 
 

♦ If xy λλ > , buckling about the y axis will govern the design 
strength; i.e., 
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How to Use Manual Table 4-2: 
 

♦ Design strength in axial compression is calculated as  
 

gcrnc AF.P 850=φ  

 

♦ Table contains ncPφ  for various values of KyLy, assuming 
buckling about y-axis. 

 
♦ How to check buckling about x-axis: 

 

If 
yx

xx
yy r/r

LK
LK <  buckling is about x-axis. 

 
♦ How to read ncPφ  if buckling is about x-axis:  

Use the length as 
yx

xx
r/r
LK

 in Table 4-2. 

 
Design Procedure: 
 
1. Calculate the factored design loads . uP
 
2. From the column tables, determine the effective length KL using  
 

( ) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−−= axisstrongaxisweak
yx

xx
yy r/r

LK
,LKmaxKL  

 
and pick a section from Table 4-2. 
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3. Check the member thickness ratio in Table B5.1, if the member is 
not slender, use LRFD Chapter E2; otherwise, use LRFD 
Specifications Appendix E3 (reduction of design strength by factor 
Q given in Appendix B of Specifications). 

 
4. Check using Table 4-2 to 4-17: 
 

• Calculate KL and enter into Table 4-2 to 4-17. 
• Find the design strength ncPφ . 

 
Or, using the formulas given in Chapter E2:  
 

The slenderness parameter is calculated as 
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 The critic al stress is calculated as 
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The design strength gcrgcrcnc AFAFP 85.0==φφ  
 
Required strength ≤ Design strength 

 
ncu PP φ≤   

 
 
Check for Slenderness Ratio: 
 
Slenderness ratio (recommendation) (SPEC B7) 
 

200/ ≤rKL  
 
Local Buckling 
 
Local buckling is an instability due to the plates of the member 
becoming unstable. The local buckling of a member depends on its 
slenderness which is defined as the width-thickness ratio (b/t ratio), b 
is the width of the section and t is its thickness. Steel sections are 
classified as compact, noncompact or slender depending on the width-
thickness ratio of their elements. 
 
Compact section: is capable of developing a fully plastic stress 
distribution and possess rotation capacity of approximately three 
before the onset of local buckling; i.e., local buckling is not an issue. 
 
Noncompact section: can develop the yield stress in compression 
elements before local buckling occurs, but will not resist inelastic 
local buckling at strain levels required for a fully plastic stress 
distribution. Local buckling can occur in the inelastic zone. 
 
Compact sections have small b/t ratio and do not buckle locally; 
noncompact section can buckle locally; slender sections have a large 
b/t ratio. Let us define the width-thickness ration of an element of the 
cross-section (flange or web of WF shapes) as  
 

t
b

=λ  

Then the members are classified as follows: 

J.S. Arora/Q. Wang  CompresionDesign.doc 8



53:134 Structural Design II 

 
Compact section:   pλλ ≤  for all elements 

Noncompact sections:  rp λλλ ≤< . 

Slender:   rλλ > . 
 
The limiting values λp and λr for λ are given in Table B5.1 of the 
LRFD Secifications.  
 
The strength corresponding to any buckling mode cannot be 
developed if the elements of the cross-section fail in local buckling. 
When b/t exceeds a limit λr (Table B5.1 of the LRFD Specifications), 
the member is classified as slender. Slender members can fail in local 
buckling resulting in reduced design strength. For slender members, 
Appendix B of the LRFD Specifications describes the reduction 
factors Q to be used for calculation of the critical stress Fcr.  
 
Basically, the design strength needs to be reduced if the member is 
slender. Table B5.1 of the LRFD Specifications defines the following 
limits for sections that are not slender: 
 

Unstiffened elements (flange): yrr
f

f F/E.;
t

b
560

2
=≤ λλ  

Stiffened element (web):  yrr
w

F/E.;
t
h 491=≤ λλ  

 
Flexural-Torsional Buckling: 
 
Thin unsymmetrical members can fail in flexural-torsional buckling 
under axial loads, such as angles, tees. Calculation of design strength 
based on the flexural-torsional buckling failure mode is described in 
Section E3 and Appendix E3 of the LRFD Specifications. 
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