Problem 1:
A semicircular cantilever beam, as shown in figure below, has a radius of curvature R and a uniform circular cross-section of diameter d. It is subjected to loads of magnitude P at points B and C.

(a) Using Castigliano's theorem, calculate the vertical deflection at C (say, δ_C) in terms of P, modulus of elasticity E, shear modulus G, radius of curvature R, cross-sectional area A, form factor for shear α, and moment of inertia of the cross-section I. Include all components of strain energy due to axial force, shear force, and bending moment.

(b) For $P = 150$ N, $R = 200$ mm, $d = 20$ mm, $E = 200$ GPa, $\alpha = 10/9$, and $G = 77.5$ GPa, calculate δ_C from the solution obtained in (a). What is the error in predicting δ_C when the components of strain energy due to axial and shear forces are ignored?

Note, the components of strain energy (U_N, U_V, and U_M) due to axial force (N), shear force (V), and bending moment (M) are:

$$U_N = \int \frac{N^2 ds}{2AE}; \quad U_V = \int \frac{\alpha V^2 ds}{2AG}; \quad \text{and} \quad U_M = \int \frac{M^2 ds}{2EI}.$$
Problem 2:
A weightless, Hookean, elastic beam ABC, shown in figure below, is fixed at point A and hinged at point C. The support at C allows rotation but prevents displacements. The beam exhibits small displacements in the x-y plane due to statically applied vertical load P at point B. Assume that the beam stores strain energy U only in bending, where $U = \int M^2 ds / 2EI$, E is the elastic modulus, and I is the moment of inertia of the beam cross-section. Using Castigliano's theorem:

(a) Determine the reactions at point C in terms of P.

(b) Find the vertical deflection of point B in terms of P and beam parameters.