

Write the number corresponding to the correct probability distribution in each blank below. Note that some distributions may apply in more than one case, while others not at all!

Cars arrive at a toll booth on the freeway at the average rate of $8 /$ minute in a completely random fashion. The arrival times are recorded, beginning at 8:00 am. What probability distribution does each of the following random variables have?
\qquad a. time of arrival of first car
\qquad b. time of arrival of car \#2
c. time between arrival of car \#1 and car \#2
__d. number of cars arriving during the first minute (between 8:00 and 8:01)
Under normal circumstances, 5% of the items produced by a certain process are defective. All items are routinely inspected as soon as they are produced. Which probability distributions would best be used to compute the probability that...
__ e. exactly one of the first ten items is defective
___f. the first and second item are both defective
g. the second defective item is item \#10
_ h. two or fewer defective items are found among the first 20 inspected

- i. the fifth item is the first to be found defective

Probability distributions:

1. Bernouilli
2. Geometric
3. Binomial
4. Exponential
5. Poisson
6. Pascal
7. Erlang
8. Normal

Solutions:

Exponential	a. time of arrival of first car E. time of arrival of car \#2
Erlang Exponential	c. time between arrival of car \#1 and car \#2 d. number of cars arriving during the first minute (between 8:00
and Poisson	

Binomial e. exactly one of the first ten items is defective
Binomial f. the first and second item are both defective
Pascal g. the second defective item is item \#10
Binomial \quad h. two or fewer defective items are found among the first 20 inspected
Geometric i. the fifth item is the first to be found defective
$\langle\bullet\rangle-\langle\bullet\rangle-\langle\bullet\rangle-\langle\bullet\rangle-\langle\bullet\rangle-\langle\bullet\rangle-\langle\bullet\rangle-\langle\bullet\rangle-\langle\bullet\rangle$ Quiz \#2 $\langle\bullet\rangle-\langle\bullet\rangle-\langle\bullet\rangle-\langle\bullet\rangle-\langle\bullet\rangle-\langle\bullet\rangle-\langle\bullet\rangle-\langle\bullet\rangle-\langle\bullet\rangle$
For each of the random variables below, write the number corresponding to the correct probability distribution. Note that some distributions may apply in more than one case, while others not at all! Assume that arrivals of vehicles form a Poisson process.
\qquad a. the number of cars passing through an intersection during a 1-minute green light.
\qquad b. the number of left-handed students in a class of 20 .
c. the strength of a 10 -foot steel chain
\qquad d. the time until the arrival of the third car at an intersection during a red light
\qquad e. the total weight of a group of persons on an elevator, when loaded to its capacity of 18 persons
\qquad f. the weight of the heaviest person on an elevator, when loaded to its capacity of 18 persons
\qquad g. the time you must wait for a bus after arriving at the bus stop
\qquad h. the lifetime of an electronic device with several dozen components which might fail (each necessary for the device to function)
\qquad i. age of the oldest alumnus of the University of Iowa
—_ j. number of defective items found when testing a batch of 12 .
k. the result of tossing a single coin

1. the number of items produced in order to obtain 5 acceptable items, if each is tested before producing the next
\qquad m . the magnitude of the highest rate of flow into the Coralville Reservoir next year

Probability distributions:

1. Bernouilli
2. Geometric
3. Binomial
4. Exponential
5. Poisson
6. Pascal (negative binomial)
7. Erlang (Gamma) with $\mathrm{k}>1$
8. Normal
9. Gumbel
10. Uniform
11. Weibull
12. Chi-square

Solutions:

Poisson: the number of cars passing through an intersection during a 1-minute green light.
Binomial: the number of left-handed students in a class of 20.
Weibull:
Erlang: the strength of a 10 -foot steel chain

Normal: \quad the total weight of a group of persons on an elevator, when loaded to its
the time until the arrival of the third car at an intersection during a red light capacity of 18 persons
Gumbel: the weight of the heaviest person on an elevator, when loaded to its capacity of 18 persons
Exponential: the time you must wait for a bus after arriving at the bus stop
Weibull: the lifetime of an electronic device with several dozen components which might fail (each necessary for the device to function)
Gumbel: age of the oldest alumnus of the University of Iowa
Binomial: \quad number of defective items found when testing a batch of 12.
Bernouilli: the result of tossing a single coin
Pascal: \quad the number of items produced in order to obtain 5 acceptable items, if each is tested before producing the next
Gumbel: the magnitude of the highest rate of flow into the Coralville Reservoir next year
$\langle\cdot\rangle-\langle\cdot\rangle-\langle\cdot\rangle-\langle\cdot\rangle-\langle\cdot\rangle-\langle\cdot\rangle-\langle\cdot\rangle-\langle\cdot\rangle-\langle\cdot\rangle$ Quiz \#3 $\langle\cdot \bullet\rangle-\langle\bullet\rangle-\langle\bullet\rangle-\langle\bullet\rangle-\langle\bullet\rangle-\langle\bullet\rangle-\langle\bullet\rangle-\langle\bullet\rangle-\langle\bullet\rangle$

Fill each of the five blanks with a letter from the list at the bottom of the page.

Suppose that you have turned on simultaneously 100 light bulbs, and at the beginning of each day for the next five days ($\mathrm{t}=1,2,3,4,5$) observed the number of bulbs still burning $\left(\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{~N}_{3}, \mathrm{~N}_{4}, \mathrm{~N}_{5}\right.$, respectively). You then calculate the "reliability", which is $\mathrm{Rt}=$ $\mathrm{N}_{\mathrm{t}} / 100$. If the lifetime of a bulb has a Weibull probability distribution, then the five data points should lie on a straight line if you plot them on "Weibull probability paper", which is equivalent to plotting, on normal graph paper:
on the vertical axis: $y=$ on the horizontal axis: $\mathrm{x}=$
\qquad When you do this, the slope of the line is \qquad , the x -intercept is \qquad , and the y intercept is \qquad _.
a. t
g. R_{t}
m. shape parameter k
b. $\ln t$
h. $\ln \mathrm{R}_{\mathrm{t}}$
n. scale parameter u
c. $\ln 1 / t$
i. $\ln 1 / \mathrm{Rt}_{\mathrm{t}}$
o. mean value m
d. $\ln \ln t$
e. $\ln \ln 1 / \mathrm{t}$
j. $\ln \ln \mathrm{R}_{\mathrm{t}}$
p. standard deviation s
k. $\ln \ln 1 / \mathrm{Rt}_{\mathrm{t}}$
q. $\ln u$
f. $k \ln u$

1. $\mathrm{u} \ln \mathrm{k}$
r. $\ln \mathrm{k}$

Solution:
Suppose that you have turned on simultaneously 100 light bulbs, and at the beginning of each day for the next five days ($\mathrm{t}=1,2,3,4,5$) observed the number of bulbs still burning $\left(\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{~N}_{3}, \mathrm{~N}_{4}, \mathrm{~N}_{5}\right.$, respectively). You then calculate the "reliability", which is $\mathrm{Rt}=$ $\mathrm{N}_{t} / 100$. If the lifetime of a bulb has a Weibull probability distribution, then the five data points should lie on a straight line if you plot them on "Weibull probability paper", which is equivalent to plotting, on normal graph paper:
on the vertical axis: $y=\ln \ln 1 / \mathbf{R} \mathbf{t}$
on the horizontal axis: $x=\ln \mathbf{t}$
When you do this, the slope of the line is \mathbf{k},
the x -intercept is \mathbf{u},
and the y-intercept is $\mathbf{k} \ln \mathbf{u}$.

For each SLAM network below, state

- the time at which the first entity leaves the system,
- the time at which the simulation ends (or the last entity leaves the system, whichever is first), and
- the number of entities which have left the system when the simulation ends.

Note that all activity durations are constants, and none random!

Network	Time first entity leaves	Time Simulation Ends
B	-	-
C	-	-

Number of entities
which leave system
\qquad

Solutions:

Sequence of events in network A:

Time
0
1
2

3
4

Event
Entity \#1 created \& enters queue
Service begins on entity \#1
Entity \#2 created \& enters queue
Entity \#1 service completed, leaves system
Service begins on entity \#2
Entity \#3 created \& enters queue
Entity \#4 created \& enters queue
Entity \#2 service completed, leaves system
Entity \#5 created \& enters queue
Service begins on entity \#3

Sequence of events in network B:
Time
0 Entity \#1 created \& enters queue
Service begins on entity \#1
Entity \#2 created \& enters queue
Service begins on entity \#2
Entity \#3 created \& enters queue
Entity \#1 service completed, leaves system
(which triggers termination of simulation)

Note that, since the queue initially contains one entity (\#2), the server is busy with an entity (\#1). Note also that when an entity is created, it leaves the create node by both branches.
Sequence of events in network C:

Time	Event Entity \#3 created (One copy begins each activity leaving create node)
1	Service begins on entity \#1 Entity \#3 arrives in queue (length now 2)
	Entity \#4 created (One copy begins each activity leaving create node) 2
Entity \#1 service completed, leaves system Service begins on entity \#2 Entity \#3 arrives at terminate node \& leaves system Entity \#4 arrives in queue (length still 2) Entity \#5 created (One copy begins each activity leaving create node) Entity \#5 arrives in queue (length now 3) Entity \#4 arrives at terminate node \& leaves system (which triggers termination of simulation)	

Indicate whether true or false below:

1. The earliest start time for an activity depends on the earliest finish time for the project.
_ 2. The critical path of a project is the longest path from beginning to end.

- 3. In PERT, the project duration is assumed to be a random variable with a BETA distribution.

4. In PERT, the duration of an activity is assumed to be a random variable with a BETA distribution.
__ 5. A SLAM network model of a project uses the activity-on-node representation.
__ 6. All activities on a critical path have their latest finish times equal to their early start times.
5. In CPM (with the A-O-A network model) the earliest time for a node is the maximum of the early finish times of activities entering the node.
6. In PERT, the calculation that the critical path will be completed by time T assumes that activity times are independent random variables.
7. In PERT, the minimum completion time of the project is assumed to be a random variable with a Weibull distribution.
_ 10. Consider the project consisting of the following activities:
Immediate

Activity	Predecessor(s)	Duration (days)
A	none	3
B	none	5
C	A	2
D	B,C	4
E	B	1
F	E	2

What arrow, if any, is missing from the network below?

a. From node 1 to node 4
b. From node 2 to node 3
c. From node 3 to node 4
d. None of the above
11. What are the correct numerical values $(0,1,2,3, \ldots \infty)$ of the parameters $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}$, $\& \mathbf{f}$ in the SLAM network model below? (Note that some other parameters are missing... do not assume that the default values are acceptable!)

$\langle\bullet\rangle-\langle\bullet\rangle-\langle\bullet\rangle-\langle\bullet\rangle-\langle\bullet\rangle-\langle\bullet\rangle-\langle\bullet\rangle-\langle\bullet\rangle-\langle\bullet\rangle$ Quiz \#6 $\langle\bullet\rangle-\langle\bullet\rangle-\langle\bullet\rangle-\langle\bullet\rangle-\langle\bullet\rangle-\langle\bullet\rangle-\langle\bullet\rangle-\langle\bullet\rangle-\langle\bullet\rangle$
For each system described below, indicate the appropriate SLAM network setment (A through H) which might best model it. If no network segment shown could be used, indicate " N " (none).

1. Customers select the check-out lane at the grocery store which has the shortest queue.
\qquad 2. Two (identical) servers select their next job from the longer of two queues.
2. Widgets and boxes arrive on two conveyors at the final station on an assembly line. Two (identical) workers have the task of selecting a widget and a box, packing it, and sealing the box.
3. Two workers, who differ in the speed with which they work, select their next job from queue \#1 if any wait there, and queue \#2 otherwise.
4. Arriving customers select the waiting area (of two available) with the lesser number of people already waiting. Two non-identical clerks serve the person who has waited the longest.
5. Customers arrive at two queues to wait for service by either of two clerks. If both clerks are idle, customers prefer clerk \#1. If a clerk finishes serving a customer and both queues have persons waiting, he selects the customer at the head of the longest queue.

Solutions:

1. D: Customers select the check-out lane at the grocery store which has the shortest queue.
2. B: Two (identical) servers select their next job from the longer of two queues.
3. H: Widgets and boxes arrive on two conveyors at the final station on an assembly line. Two (identical) workers have the task of selecting a widget and a box, packing it, and sealing the box.
4. A: Two workers, who differ in the speed with which they work, select their next job from queue \#1 if any wait there, and queue \#2 otherwise.
5. \mathbf{D} (or \mathbf{N}, if the clerks may select from either waiting area) Arriving customers select the waiting area (of two available) with the lesser number of people already waiting. Two non-identical clerks serve the person who has waited the longest.
6. E: Customers arrive at two queues to wait for service by either of two clerks. If both clerks are idle, customers prefer clerk \#1. If a clerk finishes serving a customer and both queues have persons waiting, he selects the customer at the head of the longest queue.

Below are SLAM network models for 3 examples which were described in the class (and on the HYPERCARD stacks). The values of some parameters are missing (designated by A through U, excluding letter 0). Give appropriate numerical values of each parameter (0 , $1,2,3, \ldots$) on the attached answer sheet.

Network \#1: Jobs arrive and are processed, one at a time, on a machine which is subject to breakdown. When a breakdown occurs, job processing is interrupted while the machine is repaired.

EYPON(30]

Network \#2: A power plant has three primary generators. When one fails, a spare generator is switched on while the primary generator is being repaired. (The switch fails to function with probability p, in which case the system fails.) If either the spare generator or a second primary generator fails before the first is repaired, the system also fails.

Network \#3: A system consists of eight components, in a complex series/parallel arrangement as follows:

The components have lifetimes which are exponentially distributed with the following expected values: A, D, \& H: 300 days; B\&C: 200 days; E,F,\&G: 100 days. The system is simulated in order to estimate its failure time.

$\langle\bullet\rangle-\langle\bullet\rangle-\langle\bullet\rangle-\langle\bullet\rangle-\langle\bullet\rangle-\langle\bullet\rangle-\langle\bullet\rangle-\langle\bullet\rangle-\langle\bullet\rangle$ Quiz \#8 $\langle\cdot \bullet\rangle-\langle\bullet\rangle-\langle\bullet\rangle-\langle\bullet\rangle-\langle\bullet\rangle-\langle\bullet\rangle-\langle\bullet\rangle-\langle\bullet\rangle-\langle\bullet\rangle$
Part One: A system consists of five components (A,B,C,D, \&E). The system can function if either of components D or E (or both) are functioning, but fails if any of components A, B, or C fail. The probability that each component fails during the first year of operation is 10% for A, B, and C , and 20% for D and E .
a. Which of the following diagrams represents this system?

b. Which of the following expressions will give the reliability of the system?

$$
\text { 1. }(0.9)^{3}(0.2)^{2}
$$

2. $(0.9)^{3}\left[1-(0.2)^{2}\right]$
3. (1-
$(0.1)^{3}(0.8)^{2}$
4. $(0.9)^{3}(0.8)^{2}$
5. $\left[1-(0.9)^{3}\right](0.8)^{2}$
6. [1-
$\left.(0.1)^{3}\right](0.8)^{2}$
In the SLAM network below, what are the appropriate values for the parameters $\mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}$, and g , in order to simulate this system?

Part Two: An ordinary die (cube) is tossed sixty times, and the number of times that each face appears is recorded.

h. What is the name of the probability distribution of the number of observations $\left(\mathrm{O}_{\mathrm{i}}\right)$ in cell \#i?

1. Normal
2. Poisson
3. Binomial
4. Weibull
5. Chi-square
6. None of these
i. What is the expected value of the random variable O_{i}, rounded to the nearest integer?
j. What is the standard deviation of O_{i}, rounded to the nearest integer?
k. Complete the table below and write $\mathrm{D}=\sum_{\mathrm{i}=1}^{6} \mathrm{D}_{\mathrm{i}}$, rounded to the nearest integer, on the answer sheet.

i	Ei	Oi	Di
1	-	8	-
2	-	12	-
3	-	7	-
4	-	11	-
5	-	10	-
6	-	12	-

1. What is the name of the probability distribution of D ?
2. Normal
3. Poisson
4. Binomial
5. Weibull
6. Chi-square
7. None of these
m . According to the table on the answer sheet, what is the probability that if the experiment were repeated, a value at least as large as this D would be observed?
n. Should this die be considered "loaded", i.e., unfair?

| | $\mathrm{P}\left\{\mathrm{D}>\chi^{2}\right\}$ | | | | |
| :---: | ---: | :---: | :---: | ---: | ---: | ---: |
| degrees of freedom | $\alpha=95 \%$ | $\alpha=90 \%$ | $\alpha=10 \%$ | $\alpha=5 \%$ | $\alpha=1 \%$ |
| 1 | .004 | .0158 | 2.71 | 3.84 | 6.63 |
| 2 | . .103 | .211 | 4.61 | 5.99 | 9.21 |

3	.352	.584	6.25	7.81	11.3
4	.711	1.06	7.78	9.49	13.3
5	1.15	1.61	9.24	11.1	15.1
6	1.64	2.20	10.6	12.6	16.8

Solutions:

Part One: A system consists of five components (A,B,C,D, \&E). The system can function if either of components D or E (or both) are functioning, but fails if any of components A, B, or C fail. The probability that each component fails during the first year of operation is 10% for A, B, and C , and 20% for D and E .
a. Which of the following diagrams represents this system? _\#3

b. Which of the following expressions will give the reliability of the system? _\#2

1. $(0.9)^{3}(0.2)^{2}$
2. $(0.9)^{3}\left[1-(0.2)^{2}\right]$
3. (1-
$(0.1)^{3}(0.8)^{2}$
4. $(0.9)^{3}(0.8)^{2}$
5. $\left[1-(0.9)^{3}\right](0.8)^{2}$
6. [1-
$\left.(0.1)^{3}\right](0.8)^{2}$
In the SLAM network below, what are the appropriate values for the parameters $\mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}$, and g , in order to simulate this system?

$c=1, d=5, e=2, f$ is arbitrary (since no more than 2 entities can arrive at this node), $g=1$.

Below are two examples which were discussed in class (\& in the Hypercard Stacks). In each case, write the values of the parameters in the networks represented by \mathbf{A} through \mathbf{J}.

Part One: Machine Subject to Breakdowns

Jobs arrive at a machine, which is subject to breakdown. When breakdown occurs, the machine must be repaired before processing of the jobs may continue.

Part Two: Queue with Intermittent Service

Jobs arrive at a machine in a manufacturing facility, but an operator begins processing them only when 4 jobs have accumulated. When 4 jobs have accumulated, he begins operating the machine. After no more jobs are waiting, he then leaves the machine until 4 more jobs have accumulated.

