Solutions

Ouiz #9 Solutions -- Spring 2002

Part I: Project Scheduling with Uncertainty

art I: Proje	ct Scheduling with Uncertainty			
		Predecessor	Duration (days)	
Activity	Description	Activities	Expected	Std. Dev.
А	Clear & level site	none	2	1
В	Erect building	Α	6	2
С	Install generator	А	4	1
D	Install maintenance equipment	В	4	2
E	Install water tank	А	2	1
F	Connect generator & tank to building	B,C,E	5	2
G	Paint & finish work on building	В	3	1
Н	Facility test & checkout	D,F	2	1

1. Three nodes in the AOA network below are not labeled. Label them.

 Complete the computation of the earliest & latest <u>expected</u> times for the events (indicated in the boxes ABOVE). There are six values to be computed!

3. If each duration is its <i>expected</i> value, indicate	e whether activities D & F are crit	ical, and for activity G, compute:
ES = earliest start time	LS = latest start time	TF = total float (slack)
EF = earliest finish time	LF = latest finish time	

Activity	Duration	ES	LS	EF	LF	TF	Critical?
A	2	0	0	2	2	0	Yes
В	6	2	2	8	8	0	Yes
С	4	2	4	6	8	2	No
D	2	8	9	12	13	1	No
E	4	2	6	4	8	4	No
F	5	8	8	13	13	0	Yes
G	3	_8_	_12_	_11_	_15_	_3_	No
Н	2	13	13	15	15	0	Yes

4. What is the expected completion time for the project? 15

5. Under the assumptions of PERT, what is...

the standard deviation of the completion time? <u>3.162</u>

Sum variances of critical activities: $\sigma^2 = 1^2 + 2^2 + 2^2 + 1^2 = 10 \Rightarrow \sigma = \sqrt{10} \approx 3.162$

the probability distribution of the completion time? (circle one: Exponential Triangular **Beta** Normal Gamma Weibull) Part II. Birth-death model of queue Consider the birth-death process:

<u>a</u> 2. The probability of state #1 in steady-state is found by

a. $\pi_1 = 2\pi_0$	c. $\pi_1 = \frac{3}{4}\pi_0$	e. $\pi_1 = \pi_0$
b. $\pi_1 = \frac{1}{2}\pi_0$	d. $\pi_1 = \frac{4}{3}\pi_0$	f. None of the above

- <u>b</u> 3. The average time between arrivals when the queue is empty is *(choose nearest value)* a. ten minutes b. fifteen minutes c. twenty minutes d. thirty minutes e. forty-five minutes f. one hour
 - g. None of the above
- <u>d</u> 4. The average time to serve a "customer" is (choose nearest value)

 a. ten minutes 	b. fifteen minutes	 c. twenty minutes
d. thirty minutes	e. forty-five minutes	f. one hour
	g. None of the above	

- c 5. How many servers are there for the queue which is modeled above?
 - a. one
 b. two
 c. three

 d. four
 e. five
 f. None of the above

 \underline{b} 6. The queue modeled above would have

a. a finite source population b. infinite source population c. *None of the above*