Name

Part I: One hundred identical devices are tested, and the test is terminated after 50 days, at which time 42 of them have failed. *Assumption*: The device has a lifetime with Weibull distribution. *Indicate "+" for true, "O" for false.*

- 1. If 10 units of this device are installed in a facility, the number still functioning after 50 days has a Weibull distribution.
- 2. To estimate the time at which 90% of the devices will have failed, evaluate 1 F(0.90).
- $_$ 3. The quantity R_t is the fraction of the devices which have survived until time t.
- 4. To estimate the Weibull parameters u & k for this particular device, we may use the "Method of Moments".
- 5. Under our assumption above, the time *between* the failures will have the Gumbel distribution.
- $_$ 6. The number of failures at time t, $N_{f}(t)$, is assumed to have a Weibull distribution.
- 7. The Weibull CDF, i.e., F(t), gives, for each device, the probability that it has failed at time t.
- 8. The time between the failures in the group of 100 units was assumed to have the Weibull distribution.
- 9. The *secant method* is a method which is used to solve a nonlinear equation.
- 10. The exponential distribution is a special case of the Weibull distribution, with $\lambda = 1/u$.
- 11. The exponential distribution is a special case of the Weibull distribution, with k=0.
- 12. A value of k>1 indicates an increasing failure rate, while k<1 indicates a decreasing failure rate.
- _____ 13. The slope of the straight line fit by linear regression to the data will be the estimate of the "shape" parameter k.
- 14. In general, given only a coefficient of variation (i.e., the ratio σ/μ) for the Weibull distribution, the parameter k can be determined.

Part II: Multiple choice:

From the list below, choose the most appropriate model for the following random variables:

- 15. The time at which there are no living individuals in a population of bacteria which is exposed to an antibiotic being tested.
- 16. The strength of a chain used on a crane for loading & unloading cargo.
- 17. The total weight of the university football team.
- 18. The failure time of a television.
- 19. The annual peak flow of the Mississippi River at Davenport.
 - a. Normalb. Gumbelc. Exponentiald. Weibulle. Erlangf. Chi-square

Let Y_i be the *i*th of N observations, and $F_i = \dot{I}/N$.

When plotting the points to fit a straight line in order to estimate $\alpha \& u$ for the *Gumbel* distribution,

- 20. The vertical axis should represent ...
- 21. The horizontal axis should represent ...
 - 22. The slope of the line should be approximately ...
 - a. Y b. F c. ln Y d. ln F e. -ln F f. -ln(-ln F)g. α h. u i. $-\alpha u$ j. coefficient of variation k. None of the above

GUMBEL DISTRIBUTION

CDF	$F_{Y}(y) = \exp\left\{-\exp\left[-\alpha(y-u)\right]\right\}$
density	$f_{Y}(y) = \alpha \exp\{-\alpha(y-u) - \exp[-\alpha(y-u)]\}$
mean value	$\mu_{Y} = u + \frac{0.577}{\alpha}$
standard deviation	$\sigma_{Y} = \frac{1.282}{\alpha}$

WEIBULL DISTRIBUTION

CDF	$F_T(t) = 1 - e^{-\left(\frac{t}{u}\right)^k}$
Mean value	$\mu_T = u\Gamma\left(1 + \frac{1}{k}\right)$
Standard deviation	$\sigma_T = u \sqrt{\Gamma\left(1 + \frac{2}{k}\right) - \Gamma^2\left(1 + \frac{1}{k}\right)}$
Coefficient of variation	$\frac{\sigma_T}{\mu_T} = \sqrt{\frac{\Gamma\left(1 + \frac{2}{k}\right)}{\Gamma^2\left(1 + \frac{1}{k}\right)} - 1}}$
	(1, 1/) $(1/)$ $(1/)$ $(1/)$ $(1/)$

 $\Gamma(x) = (x-1)!$ for integer $x > 0 \Rightarrow \Gamma(1 + \frac{1}{k}) = (\frac{1}{k})!$ for $k = 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$

