\qquad

 57:022 Principles of Design II - Quiz \#4 Solutions
 Spring 2002

Indicate "+" for true, "O" for false.
_ 1. When choosing between two different regression models, i.e., "fits" of a curve to data points, the model with the lower value of R^{2} should be chosen.
__ 2. In linear regression, the "error" of a curve fitted to data points $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)$ is the vertical distance between the curve and the point $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)$.
In the "newsboy" problem, ...
3. we assume that we know the probability distribution of the daily demand.
_ 4. an order for newspapers must be placed before the demand is known.
_ 5. any excess inventory at the end of the day may be carried over to satisfy the next day's demand.
__ 6. if demand exceeds the quantity ordered, additional newspapers may be ordered at a higher cost.
7. the number of newspapers delivered to the newsboy is random.
_ 8. Linear regression requires solving a linear programming problem.
_ 9. Student A performs ten simulations of the newsboy problem, and student B performs twenty. Suppose that both get the same average profits and the same sample variances. Then both will get the same 95%-confidence interval for the expected profit.

Multiple choice:

10. Given a set of data points ($\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}$), $\mathrm{i}=1,2, \ldots \mathrm{n}$, "linear regression" is a method for determining a relationship $\mathrm{y}=\mathrm{f}(\mathrm{x})$ which
a. sum of the errors $\sum_{i=1}^{n}\left[y_{i}-f\left(x_{i}\right)\right] \quad$ c. sum of absolute values of the errors: $\sum_{i=1}^{n}\left|y_{i}-f\left(x_{i}\right)\right|$
b. maximum error: $\max _{i}\left[y_{i}-f\left(x_{i}\right)\right]$
d. sum of the squares of the errors: $\sum_{i=1}^{n}\left[y_{i}-f\left(x_{i}\right)\right]^{2}$
e. None of the above

Match each curve on the left with its transformation on the right whichmight be used to get a fit by linearregression. (Note: in some cases $\alpha=\mathrm{a}$, in other cases α may be a transformation of a.)
\qquad

$$
Y=a b^{X}
$$

11. $\frac{1}{Y}=\alpha-\beta \frac{1}{X}$
12. $\ln Y=\alpha+\beta X$

$$
\ldots Y=a e^{b X}
$$

12. $\ln Y=\alpha+\beta \ln X+\delta X$
13. $\ln Y=\alpha+\beta \frac{1}{X}$

$$
\ldots Y=a e^{b / X}
$$

13. $\ln Y=\alpha+\beta \ln X$
14. None of the above

$$
\ldots Y=a X^{b} e^{c X}
$$

14. $\frac{1}{Y}=\alpha+\beta e^{-X}$
