\qquad

57:022 Principles of Design II - Quiz \#3
Wednesday, February 13, 2002

Indicate "+" for true, " O " for false.

\qquad 1. The "Cumulative Distribution Function" (CDF) of a random variable X is defined as $F(x)=P\{X \leq x\}$.
\qquad 2. The rejection method for generating a random number x having a CDF $\mathrm{F}(\mathrm{x})$ requires that you derive the inverse function $F^{-1}(\cdot)$, obtain two random numbers (x, y) having uniform distribution in $[0,1]$. If $y \leq F^{-1}(x)$ then we accept x as the random number, else repeat.
3. The inverse transformation method can always be used to generate a random number with distribution function F , provided you can calculate its inverse $F^{-1}(\cdot)$.
4. The inverse transformation method (if it can be used) will always require fewer uniformly-generated random numbers than the rejection method.
5. If the random variable R is uniformly distributed in $[0,1]$, then $-\frac{\ln (1-R)}{\lambda}$ has Poisson distribution with parameter λ.
6. In a Poisson process, the time between arrivals has a Poisson distribution.
7. The inverse transformation method to generate a random number can be used to simulate interarrival times for a Poisson process.
\qquad 8. In a Poisson process with arrival rate $\lambda /$ minute, the number of arrivals in t minutes is random, with a Poisson distribution having mean λt.
9. The exponential distribution is a special case of the Erlang distribution.
10. If $F(t)$ is the $C D F$ of the interarrival time for a Poisson process, the expected number of arrivals E_{i} which fail in the time interval $\left[\mathrm{t}_{\mathrm{i}-1}, \mathrm{t}_{\mathrm{i}}\right]$ is $\mathrm{F}\left(\mathrm{t}_{\mathrm{i}}\right)-\mathrm{F}\left(\mathrm{t}_{\mathrm{i}-1}\right)$
\qquad 11. The inverse transformation method could be used for generating random numbers having an Erlang distribution.
\qquad 12. If F is the $C D F$ of a random variable X, then $F(0)=1$.
\qquad

Consider the probability distribution with density function f shown on the right:

13. The value of C must be (choose nearest value):
a. 0.1
b. 0.2
c. 0.3
d. 0.4
e. 0.5
f. 0.6
g. 0.7
h. 0.8
i. 0.9
j. 1.0
k. 10

1. ≥ 20
2. Suppose that four pairs (x, y) of random numbers were generated, with x uniformly distributed between 0 and 10 , and y between 0 and C , and that the four pairs were plotted as shown above. Which sequence of random numbers would have the desired distribution?
a. $1,2, \ldots$
b. $1,7, \ldots$
c. $2,7, \ldots$
d. $2,8, \ldots$
3. This method for generating random numbers is known as
a. inverse transformation method
b. triangular method
c. decomposition method
d. composition method
e. rejection method
f. none of the above
