Indicate "+" for true, "O" for false.

- 1. The "Cumulative Distribution Function" (CDF) of a random variable X is defined as $F(x) = P\{X \le x\}$.
- 2. The rejection method for generating a random number *x* having a CDF F(x) requires that you derive the inverse function $F^{-1}(\cdot)$, obtain two random numbers

(*x*,*y*) having *uniform* distribution in [0,1]. If $y \le F^{-1}(x)$ then we accept *x* as the random number, else repeat.

- 3. The inverse transformation method can always be used to generate a random number with distribution function F, provided you can calculate its inverse $F^{-1}(\cdot)$.
- 4. The inverse transformation method (if it can be used) will always require fewer uniformly-generated random numbers than the rejection method.
- ____ 5. If the random variable R is uniformly distributed in [0,1], then $-\frac{\ln(1-R)}{\lambda}$ has

Poisson distribution with parameter λ .

- 6. In a Poisson process, the time between arrivals has a Poisson distribution.
- 7. The inverse transformation method to generate a random number can be used to simulate interarrival times for a Poisson process.
- 8. In a Poisson process with arrival rate λ /minute, the number of arrivals in t minutes is random, with a Poisson distribution having mean λt .
- 9. The exponential distribution is a special case of the Erlang distribution.
- 10. If F(t) is the CDF of the interarrival time for a Poisson process, the expected number of arrivals E_i which fail in the time interval [t_i-1,t_i] is F(t_i) F(t_i-1)
- _____11. The inverse transformation method could be used for generating random numbers having an Erlang distribution.
- 12. If F is the CDF of a random variable X, then F(0) = 1.

Name

