Indicate “+” for true, “O” for false.

___ 1. The "Cumulative Distribution Function" (CDF) of a random variable X is defined as $F(x) = P\{X \leq x\}$.

___ 2. The rejection method for generating a random number x having a CDF $F(x)$ requires that you derive the inverse function $F^{-1}(\bullet)$, obtain two random numbers (x,y) having uniform distribution in [0,1]. If $y \leq F^{-1}(x)$ then we accept x as the random number, else repeat.

___ 3. The inverse transformation method can always be used to generate a random number with distribution function F, provided you can calculate its inverse $F^{-1}(\bullet)$.

___ 4. The inverse transformation method (if it can be used) will always require fewer uniformly-generated random numbers than the rejection method.

___ 5. If the random variable R is uniformly distributed in [0,1], then $-\frac{\ln(1-R)}{\lambda}$ has Poisson distribution with parameter λ.

___ 6. In a Poisson process, the time between arrivals has a Poisson distribution.

___ 7. The inverse transformation method to generate a random number can be used to simulate interarrival times for a Poisson process.

___ 8. In a Poisson process with arrival rate λ/minute, the number of arrivals in t minutes is random, with a Poisson distribution having mean λt.

___ 9. The exponential distribution is a special case of the Erlang distribution.

___ 10. If $F(t)$ is the CDF of the interarrival time for a Poisson process, the expected number of arrivals E_i which fail in the time interval $[t_i-1, t_i]$ is $F(t_i) - F(t_{i-1})$

___ 11. The inverse transformation method could be used for generating random numbers having an Erlang distribution.

___ 12. If F is the CDF of a random variable X, then $F(0) = 1$.
Consider the probability distribution with density function f shown on the right:

13. The value of C must be (choose nearest value):
 a. 0.1
 b. 0.2
 c. 0.3
 d. 0.4
 e. 0.5
 f. 0.6
 g. 0.7
 h. 0.8
 i. 0.9
 j. 1.0
 k. 10
 l. ≥ 20

14. Suppose that four pairs (x,y) of random numbers were generated, with x uniformly distributed between 0 and 10, and y between 0 and C, and that the four pairs were plotted as shown above. Which sequence of random numbers would have the desired distribution?
 a. 1, 2, …
 b. 1, 7, …
 c. 2, 7, …
 d. 2, 8, …

15. This method for generating random numbers is known as
 a. inverse transformation method
 b. triangular method
 c. decomposition method
 d. composition method
 e. rejection method
 f. none of the above