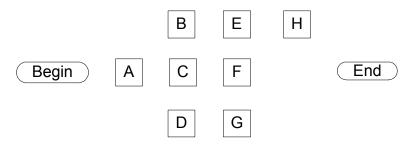
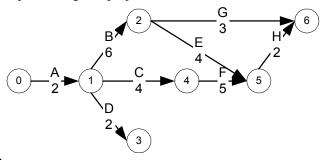
Name										

57:022 Principles of Design II - Quiz #8 Spring 2002

Part I: Redundancy A system requires a certain unreliable component in order to function, so that redundancy has been included in the design. Assume that failure rates are constant and equal to λ , and that any switches are 100% reliable.


True (+) *or False* (0)?

- ___ a. A system with "hot" standby is at least as reliable as one with "cold" standby.
- ___ b. The block diagram on the left above represents "hot" standby of the redundant unit.
- ___ c. In the block diagram on the right, the expected system lifetime is the same as the expected time of second arrival in a Poisson process with rate λ .
- ____ d. In the case of "cold" standby, there is always some probability that the standby unit cannot be started.
- ____ e. In the block diagram on the right, unit #2 does not begin its lifetime until unit #1 has failed.
- f. The reliability of the system on the left is at least as large as that of the system on the right.
- g. In the block diagram on the left, the system failure time has Erlang-2 distribution.


Part II: Project Scheduling. The activity descriptions and estimated durations for a project are:

<u>Activity</u>	<u>Description</u>	Predecessor(s)	Duration (days)
A	Clear & level site	none	2
В	Erect building	A	6
C	Install generator	A	4
D	Install water tank	A	2
E	Install maintenance equipment	В	4
F	Connect generator & tank to building	B,C,D	5
G	Paint & finish work on building	В	3
Н	Facility test & checkout	E,F	2

Draw the arrows to complete the AON (activity-on-node) network representing this project:

Draw the arrows to represent any required "dummy activities" to complete the AON (activity-on-node) network representing this project:

True (+) *or False* (*o*)?

a. A "dummy" activity always has zero duration.
b. The quantity LT(i) [i.e. latest time] for each node i is determined by a *forward* pass through the network.
c. If an activity is represented by an arrow from node i to node j, then ES (earliest start time) for that activity is ET(i).
d. If an activity is represented by an arrow from node i to node j, then LS (late start time) for that activity is LT(j).
e. If an activity is represented by an arrow from node i to node j, then that activity has zero "float" or "slack" if and only if ET(i)=LT(j).
f. An activity is critical if and only if its total float ("slack") is zero.
g. A "dummy" activity cannot be critical.
h. The forward and backward pass methods for scheduling a project are applied to the AOA network representation of the project.
i. Except perhaps for "begin" and "end" activities, "dummy" activities are unnecessary in the AON ("Activity-on-Node") representation of a project.