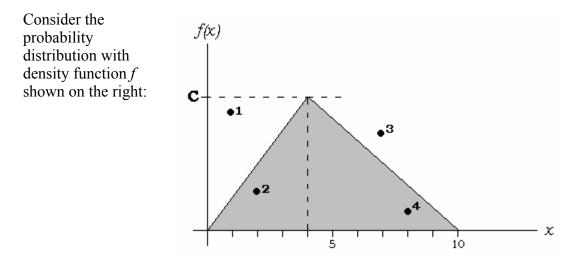
Indicate "+" for true, "O" for false.

- <u>+</u> 1. The "Cumulative Distribution Function" (CDF) of a random variable X is defined as $F(x) = P\{X \le x\}$.
- <u>O</u> 2. The rejection method for generating a random number *x* having a CDF F(x) requires that you derive the inverse function $F^{-1}(\cdot)$, obtain two random numbers (x,y) having *uniform* distribution in [0,1]. If $y \le F^{-1}(x)$ then we accept *x* as the random number, else repeat. *Note*: Rejection method: If $y \le f(x)$ where *f* is the *density* function, then we accept *x* as the random number, else repeat.
- <u>+</u> 3. The inverse transformation method can always be used to generate a random number with distribution function F, provided you can calculate its inverse $F^{-1}(\bullet)$.
- <u>+</u> 4. The inverse transformation method (if it can be used) will always require fewer uniformly-generated random numbers than the rejection method. *Note*: the inverse transformation method requires 1 uniformly-generated random number, whereas the rejection method requires one pair (x,y) if the first x is not rejected, and usually more pairs.
- <u>O</u> 5. If the random variable R is uniformly distributed in [0,1], then $-\frac{\ln(1-R)}{\lambda}$ has

Poisson distribution with parameter λ . *Note:* this has exponential distribution!

- <u>O</u> 6. In a Poisson process, the time between arrivals has a Poisson distribution. *Note*: interarrival time has exponential distribution!
- + 7. The inverse transformation method to generate a random number can be used to simulate interarrival times for a Poisson process.
- <u>+</u> 8. In a Poisson process with arrival rate λ /minute, the number of arrivals in t minutes is random, with a Poisson distribution having mean λt .
- <u>+</u> 9. The exponential distribution is a special case of the Erlang distribution.
- <u>+</u> 10. If F(t) is the CDF of the interarrival time for a Poisson process, the expected number of arrivals E_i which fail in the time interval [t_i-1,t_i] is F(t_i) F(t_i-1)
- <u>+</u> 11. The inverse transformation method could be used for generating random numbers having an Erlang distribution.
- <u>O</u> 12. If F is the CDF of a random variable X, then F(0) = 1. *Note*: $F(\infty)=1$.



<u>b</u> 13. The value of	f C must be (choose new	arest value):	
a. 0.1	b. 0.2	c. 0.3	d. 0.4
e. 0.5	f. 0.6	g. 0.7	h. 0.8
i. 0.9	j. 1.0	k. 10	$1. \ge 20$
17	0. 1 1 1 1		

Note: area of triangle must be 1, therefore $0.5 \times 10 \times C=1$

- <u>d</u> 14. Suppose that *four* pairs (x,y) of random numbers were generated, with x uniformly distributed between 0 and 10, and y between 0 and C, and that the four pairs were plotted as shown above. Which sequence of random numbers would have the desired distribution?
 - a. 1, 2, ... b. 1, 7, ...

c. 2, 7, ... d. 2, 8, ...

- <u>e</u> 15. This method for generating random numbers is known as
 - a. inverse transformation method
 - c. decomposition method
 - e. rejection method
- b. triangular method
- d. composition method
- f. none of the above