||||||||||| 57:022 Principles of Design II |||||||||||||
 Quiz \#11-10 May 2002

True (+) or False (o)?
__ 1. "Balking" in a queueing system occurs when a potential customer is discouraged from joining the queue to be served.
o 2. Little's Law states that the time spent in a queueing system has Erlang distribution.
3. In a birth/death model of a queueing system, the population size includes not only the waiting customers, but also any customers currently being served.
\qquad 4. "Reneging" in a queueing system occurs when a server sends a customer away without its having been served. Note: "Reneging" occurs when customer leaves system while still in queue awaiting service.
\qquad 5. In a birth/death model of a queueing system, a "death" refers to the departure of a customer from the system.
\qquad 6. The "utilization" of the server in an $\mathrm{M} / \mathrm{M} / 1$ system is equal to $1-\pi_{0}$.
7. Little's Law applies to any queueing system in steady state, whether or not it is a birth/death process.
\qquad 8. An $\mathrm{M} / \mathrm{M} / 1$ queueing system is a birth/death process.
_o 9. The notation W generally refers to the average time that a customer spends waiting in the queueing system, exclusive of time being served. Note: W includes service time.
\qquad 10. In an $\mathrm{M} / \mathrm{M} / 1$ queueing system, the number of customers arriving per unit time has Poisson distribution.

Consider the birth-death process on the right:
\pm 11. The arrival process suggests a "finite source population."
_o 12. The departure process suggests a single server.

131. A steady state exists for this system.
14. This might be classified as an $M / M / 3 / 3 / 3$ queueing system.

Note: $\#$ servers $=\#$ in source population $=3$
15. The probability π_{0} is equal to $1 / 6$. Note: $\frac{1}{\pi_{0}}=1+\frac{3 / \mathrm{hr}}{1 / \mathrm{hr}}+\frac{3 / \mathrm{hr}}{1 / \mathrm{hr}} \times \frac{2 / \mathrm{hr}}{2 / \mathrm{hr}}+\frac{3 / \mathrm{hr}}{1 / \mathrm{hr}} \times \frac{2 / \mathrm{hr}}{2 / \mathrm{hr}} \times \frac{1 / \mathrm{hr}}{3 / \mathrm{hr}}=1+3+3+1=8 \Rightarrow \pi_{0}=1 / 8$
16. All states are equally likely in steady state.
17. State 1 is 3 times as likely as state 0 in steady state.

