Quiz #11 - 10 May 2002

True (+) *or False* (*o*)?

- ____1. "Balking" in a queueing system occurs when a potential customer is discouraged from joining the queue to be served.
- ____2. Little's Law states that the time spent in a queueing system has Erlang distribution.
- ____3. In a birth/death model of a queueing system, the population size includes not only the waiting customers, but also any customers currently being served.
- 4. "Reneging" in a queueing system occurs when a server sends a customer away without its having been served.
- 5. In a birth/death model of a queueing system, a "death" refers to the departure of a customer from the system.
- ____ 6. The "utilization" of the server in an M/M/1 system is equal to $1-\pi_0$.
- 7. Little's Law applies to <u>any</u> queueing system in steady state, whether or not it is a birth/death process.
- ____ 8. An M/M/1 queueing system is a birth/death process.
- 9. The notation W generally refers to the average time that a customer spends waiting in the queueing system, exclusive of time being served.
- ____10. In an M/M/1 queueing system, the number of customers arriving per unit time has Poisson distribution.

Consider the birth-death process on the right:

- ____ 11. The arrival process suggests a "finite source population."
- _____12. The departure process suggests a single server.
- ____13. A steady state exists for this system.
- 14. This might be classified as an M/M/3/3/3 queueing system.
- 15. The probability π_0 is equal to 1/6.
- ______16. All states are equally likely in steady state.
- _____17. State 1 is 3 times as likely as state 0 in steady state.

Quiz #11 - 10 May 2002

True (+) *or False* (*o*)?

- ____1. "Balking" in a queueing system occurs when a potential customer is discouraged from joining the queue to be served.
- ____2. Little's Law states that the time spent in a queueing system has Erlang distribution.
- ____3. In a birth/death model of a queueing system, the population size includes not only the waiting customers, but also any customers currently being served.
- 4. "Reneging" in a queueing system occurs when a server sends a customer away without its having been served.
- 5. In a birth/death model of a queueing system, a "death" refers to the departure of a customer from the system.
- ____ 6. The "utilization" of the server in an M/M/1 system is equal to $1-\pi_0$.
- 7. Little's Law applies to <u>any</u> queueing system in steady state, whether or not it is a birth/death process.
- ____ 8. An M/M/1 queueing system is a birth/death process.
- 9. The notation W generally refers to the average time that a customer spends waiting in the queueing system, exclusive of time being served.
- ____10. In an M/M/1 queueing system, the number of customers arriving per unit time has Poisson distribution.

Consider the birth-death process on the right:

- ____ 11. The arrival process suggests a "finite source population."
- _____12. The departure process suggests a single server.
- ____13. A steady state exists for this system.
- 14. This might be classified as an M/M/3/3/3 queueing system.
- 15. The probability π_0 is equal to 1/6.
- ______16. All states are equally likely in steady state.
- _____17. State 1 is 3 times as likely as state 0 in steady state.

