\qquad

〈২〉〉〈＜〉＞＜＜＞＞＜＜＞＞＜＜＞＞＜＜＞＞＜＜＞＞＜＜＞＞＜＜＞＞＜＜＞＞＜＜＞＞＜＜＞＞
57：022 Principles of Design II
Midterm Exam－－March 6， 2002
〈〈〉＞＜＜＞＞＜＜＞＞＜＜＞＞＜＜＞＞＜＜＞＞＜＜＞＞＜＜＞＞＜＜＞＞＜＜＞＞＜＜＞＞＜＜＞＞

Part	I	II	III	IV	Total
Your score：					
Possible	15	15	10	10	50

Tables of Student＇s \boldsymbol{t}－distribution and Chi－square distribution are on last page of exam！

Part I．Suppose that vehicles on highway I－80 pass Iowa City at the rate of 5 per minute，and that 20% of the vehicles are trucks．At 8：00 a．m．，we begin recording the type and time of each passing vehicle．

In each blank below，write the number corresponding to the most appropriate probability distribution below．．Note that some distributions may apply in more than one case，while others not at all！
\qquad the number of trucks among the next ten vehicles to pass．
\qquad the weight of the heaviest truck load during the day． the number of vehicles passing during the next one－minute interval． the value 1 if vehicle $\# i$ is a truck，else 0 ． the time between successive vehicles． the time between successive trucks． the number of the first passing vehicle which is a truck． the number of the second vehicle which is a truck． the number on the license plate of the next vehicle． the time until the second truck passes．
Probability distributions：
a．Bernouilli
e．Geometric
i．Pascal（negative binomial）m．Beta
b．Binomial
f．Exponential
j．Erlang－k with $\mathrm{k}>1$
n．Uniform
c．Triangular
g．Normal
k．Gumbel
o．Poisson
d．Lambda
h．Weibull
1．Chi－square
＿1．If 10 vehicles pass，the probability that none of them are trucks is
a．$(0.8)^{9}(0.2)$
c．$(0.2)^{9}(0.8)$
e．$(0.8)^{10}$
b．$(10)(0.2)$
d．$(0.2)^{10}$
f．None of the above
\qquad 2．If 10 vehicles pass，the probability that exactly two of them are trucks is
a．$\binom{10}{2}(0.8)^{8}(0.2)^{2}$
c．$\binom{10}{2}(0.2)^{8}(0.8)^{2}$
e．$(0.8)^{8}(0.2)^{2}$
b． $1-\binom{10}{2}(0.8)^{8}(0.2)^{2}$
d． $1-\binom{10}{2}(0.2)^{8}(0.8)^{2}$
f． $1-(0.8)^{8}(0.2)^{2}$
g．None of the above
\qquad 3．The probability that a truck passes during any one－minute interval is
a． 0.2
c． $1 / \mathrm{e}$
e． $1-(1 / \mathrm{e})$
b．$(0.2)^{5}$
d．1－e
f．e
g．None of the above
\qquad 4．The probability that exactly 2 trucks pass during the next two minutes is
a．$\frac{2^{-2} e^{2}}{2}$
c． $1-e^{-4}$
e． $2 e^{-2}$
b． $1-e^{-2}$
d．$\frac{2^{2} e^{-2}}{2}$
f．None of the above
\qquad
\qquad 5. The probability that the time until the first truck passes is less than or equal to 1 minute is
a. e^{-1}
c. $1-0.2 e^{-1}$
e. $0.2 e^{-1}$
b. $1-e^{-0.2}$
d. $1-e^{-1}$
f. None of the above

Part II. ProbabilityDistributions

Classify the random variables with the distributions below as discrete (D) or continuous (C) :

1. Bernouilli
2. Binomial
3. Poisson
4. Uniform
5. Student's t
6. Geometric
7. Exponential
8. Normal 9. Weibull 10. Triangular
_11. Pascal (negative binomial)
9. Erlang-k with $\mathrm{k}>1$
10. Gumbel
_ 14. Chi-square

Part III: Goodness-of-fit

The number of vehicles arriving during each of the first 50 minutes were recorded, and shown at right. The sample mean and sample variance were 5.12 and 6.39 , respectively.

	cell	values
	Frequency	
2	$0-2$	8
2	3	6
3	4	5
4	5	9
5	6	8
6	7	9
7	$>=8$	5

We want to test whether the assumption that the arrival process is Poisson, with mean equal to the sample mean,
 is a "good fit" to the data.

i	N_{i}	O_{i}	P_{i}	E_{i}	$\left(\mathrm{E}_{\mathrm{i}}-\mathrm{O}_{\mathrm{i}}\right)^{2} / \mathrm{E}_{\mathrm{i}}$
1	$0-2$	8	0.1149	5.745	0.88512
2	3	6	0.13368	6.684	0.069996
3	4	5	0.17111	8.5555	1.4776
4	5	9	0.17522	8.761	0.00652
5	6	8	0.14952	7.476	0.036728
6	7	9	0.10936	5.468	2.2815
7	$>=8$	5	0.14374	7.187	0.6655
				Sum=D=$=$	5.4229

Indicate "+" for true, "o" for false:
\qquad 1. The CDF of the distribution of interarrival times is assumed to be $F(t)=1-e^{-\lambda t}$ where $\lambda=5.12 /$ minute.
2. The quantity E_{i}, the expected number of observations in interval $\# i$, is $n p_{i}$, where p_{i} is the probability that N_{i} arrivals are observed.
3. The quantity \mathbf{D} is assumed to have Student's t-distribution.
4. The number of observations, O_{i}, in an interval should have a binomial distribution, with parameters $(n, p)=\left(50, \mathrm{p}_{\mathrm{i}}\right)$.
5. The number of degrees of freedom is reduced by 1 in this situation.
6. The sum of several $\mathrm{N}(0,1)$ random variables has approximately a normal distribution.
7. The smaller the value of D, the better the fit for the distribution being tested.
8. The sum of several $\mathrm{N}(0,1)$ random variables has approximately a chi-square distribution.
9. The assumed distribution is at least 95% likely to be a good fit of the data.
\qquad
10. If the arrival process does have the assumed distribution, then $\mathrm{P}\left\{\mathrm{D} \geq\right.$? $\left.^{\boldsymbol{Z}}\right\}=10 \%$ (choose nearest value)
a. ≤ 7
b. 8
c. 9
d. 10
e. 11
f. 12
g. 13
h. ≥ 14

Part IV. An electronic device is made up of a large number of redundant components, and the device fails when the last component fails. The lifetime of each component is random, but its probability distribution is unknown. The manufacturer has provided a 90 -day (or 3-month) warranty on this device.

A test of the device is performed, in which ten units of the device are operated simultaneously, and the time of the first nine failures is recorded. The failure time \mathbf{T} (in years), and the fraction \mathbf{F} of the deviceswhich have failed at time \mathbf{T} are shown in the table, together with $-\ln (-\ln F)$:

T	F	$-\ln (-\ln \mathrm{F})$
0.233	0.1	-0.8340
0.304	0.2	-0.4759
0.408	0.3	-0.1856
0.537	0.4	0.0874
0.579	0.5	0.3665
0.703	0.6	0.6717
0.792	0.7	1.0309
0.895	0.8	1.4999
0.953	0.9	2.2504

We will make the assumption that the unit's lifetime has a Gumbel distribution. In order to estimate the parameters α and u , a linear regression was performed, using the data in the table above, with the resulting equation:

$$
(-\ln (-\ln F))=3.77 T-1.77
$$

1. Based upon the above linear fit, the value of the "shape" parameter (α) of the probability distribution is approximately (choose nearest value).
a. 0
b. 0.5
c. 1.0
d. 2.0
e. 3.0
f. 4.0
g. 5.0
2. Based upon the above linear fit, the value of the "location" parameter (u) of the probability distribution is approximately (choose nearest value).
a. 0
b. 0.5
c. 1.0
d. 2.0
e. 3.0
f. 4.0
g. 5.0
3. The percent of the units which are expected to fail during the 90 -day warranty period is (choose nearest value):
a. 1%
b. 2%
c. 3%
d. 4%
e. 5%
f. 6%
g. 7%
h. 8%
i. 9%
j. 10%
k. 11\%
4. $\geq 12 \%$
5. The expected lifetime of the unit (in years) is (choose nearest value):
a. 0.1
b. 0.2
c. 0.3
d. 0.4
e. 0.5
f. 0.6
g. 0.7
h. 0.8
i. 0.9
j. 1.0
k. 1.1
6. ≥ 1.2
7. To simulate values of T having this distribution, one might use..
a. Inverse transformation method
b. Rejection method
c. Both $\mathrm{a} \& \mathrm{~b}$ are correct
d. Neither a nor b are correct.
\qquad

Student's \boldsymbol{t}-distribution: β such that total shaded area $=\alpha$

Degrees of freedom	$\alpha=10 \%$	$\alpha=5 \%$	$\alpha=1 \%$
1	6.314	12.706	63.657
2	2.920	4.303	9.925
3	2.353	3.182	5.841
4	2.132	2.776	4.604
5	2.015	2.571	4.032
6	1.943	2.447	3.707
7	1.895	2.365	3.499

Chi-square distribution: χ^{2} such that $\mathrm{P}\left\{\mathbf{D} \geq \chi^{2}\right\}=\alpha$

Degrees of freedom	$\alpha=$ 10%	$\alpha=$ 5%	$\alpha=$ 1%
1	2.706	3.841	6.635
2	4.605	5.991	9.210
3	6.251	7.815	11.345
4	7.779	9.488	13.277
5	9.236	11.070	15.086
6	10.645	12.592	16.812
7	12.017	14.067	18.475

