#  <br> 57:022 Principles of Design II <br> Midterm Exam Solutions - Spring 2000 <br>  

| Part: | I | II | III | Total |
| :--- | :---: | :---: | :---: | :---: |
| Possible Pts: | 13 | 15 | 24 | 52 |
| Your score: |  |  |  |  |

## 

Choose the answers to the questions below from the list of distributions, or the table of probabilities. (State "NONE" if the answer does not appear in either place!

The foreman of a casting section in a certain factory finds that, on the average, 8 castings are made each day, and 1 in every 5 castings made is defective.
__g___ What is the probability that 2 or fewer defective castings are made in one day? Choose nearest value:
a. $\leq 20 \%$
b. $30 \%$
c. $40 \%$
d. $50 \%$
e. $60 \%$
f. $70 \%$
g. $80 \%$
h. $90 \%$
i. $100 \%$

Note: Let $\mathrm{N}_{\mathrm{t}}=\#$ defective castings in interval [0,t].
This random variable has Poisson distribution with $\lambda=0.2 \times 8 /$ day $=1.6 /$ day, so if $t=1$ day, the expected value is 1.6 and $\mathrm{P}\left\{\mathrm{N}_{1} \leq 2\right\}=78.33 \%$ can be read from the table below.

Bernouilli 2. What's the name of the probability dist'n of the quality of casting \#5 (either defective or OK)?
______3. If the section makes 8 castings on Monday, what is the probability that exactly 2 of these will be defective? Choose nearest value:
a. $\leq 20 \%$
b. $30 \%$
c. $40 \%$
d. $50 \%$
e. $60 \%$
f. $70 \%$
g. $80 \%$
h. $90 \%$
i. $100 \%$

Note: Let $\mathrm{X}=\#$ of defective castings among 8 produced. X has binomial distribution with $\mathrm{n}=8, \mathrm{p}=0.2$, and $P\{X=2\}=0.2936$ (from table below).

## -IIIIIIIII

Advertising states that, for a certain lottery ticket, "every fifth ticket carries a prize". If you buy eight tickets, what is...
__g__4. the probability that you get at least one winning ticket among the eight? Choose nearest value:
a. $\leq 20 \%$
b. $30 \%$
c. $40 \%$
d. $50 \%$
e. $60 \%$
f. $70 \%$
g. $80 \%$
h. $90 \%$
i. $100 \%$

Note: Let $\mathrm{Y}=$ \# winning tickets among 8 purchased. Then Y has binomial distribution with $\mathrm{n}=8, \mathrm{p}=0.2$, and $\mathrm{P}\{\mathrm{Y} \geq 1\}=\mathrm{P}\{\mathrm{Y}>0\}=0.8322$ (from table below).
______5. the probability that you get exactly one winning ticket? Choose nearest value:
a. $\leq 20 \%$
b. $30 \%$
c. $40 \%$
d. $50 \%$
e. $60 \%$
f. $70 \%$
g. $80 \%$
h. $90 \%$
i. $100 \%$
Note: $\mathrm{P}\{\mathrm{Y}=1\}=0.3355$.

If, instead of deciding in advance how many tickets to buy, you continue buying tickets until you have a winning ticket...
Geometric 6. what's the name of the probability distribution of the number of tickets you buy?
If you continue buying tickets until you have two winning tickets...

Pascal 7. what's the name of the probability distribution of the number of tickets you buy?

The arrival of parts to be processed by a machine is a Poisson process, with the rate $4 /$ hour. What is...
Poisson 8. the name of the probability distribution of the number of parts which arrive during the first hour?
Exponential 9. the name of the probability distribution of the time between arrivals of parts?

## 

What is the name of ...
Gumbel 10. The probability distribution of the maximum of a large number of failure times, none of which has an upper bound.
Weibull 11. The probability distribution of the minimum of a large number of failure times (all of which are nonnegative).

リIIIIIII

Some common probability distributions:
A. Bernouilli
F. Exponential
K. Uniform
B. Normal
G. Beta
L. Poisson
C. Lambda
H. Erlang
M Pascal
D Binomial
I. Geometric
N. Random
E. Chi-square
O. Gumbel

Binomial distribution ( $\mathrm{n}=8, \mathrm{p}=0.2$ )

|  | P $\{\mathrm{x}\}$ | $\mathrm{P}\{\mathrm{X} \leq \mathrm{x}\}$ | $\mathrm{P}\{\mathrm{X}>\mathrm{x}\}$ |
| :---: | :---: | :---: | :---: |
| 0 | 0.16777216 | 0.16777216 | 0.83222784 |
| 1 | 0.33554432 | 0.50331648 | 0.49668352 |
| 2 | 0.29360128 | 0.79691776 | 0.20308224 |
| 3 | 0.14680064 | 0.94371840 | 0.05628160 |
| 4 | 0.04587520 | 0.98959360 | 0.01040640 |
| 5 | 0.00917504 | 0.99876864 | 0.00123136 |
| 6 | 0.00114688 | 0.99991552 | 0.00008448 |
| 7 | 0.00008192 | 0.99999744 | 0.00000256 |
| 8 | 0.00000256 | 1.00000000 | 0.00000000 |

(Exponential distribution (Lambda $=0.5 /$ minute)

|  | $P\{T \leq t\}$ | $\Delta \mathrm{p}$ | $\mathrm{P}\{\mathrm{T} \geq \mathrm{t}$ |
| :---: | :---: | :---: | :---: |
| 0 | 0.00000000 | 0.00000000 | 1.00000000 |
| 0.5 | 0.22119922 | 0.22119922 | 0.77880078 |
| 1 | 0.39346934 | 0.17227012 | 0.60653066 |
| 1.5 | 0.52763345 | 0.13416411 | 0.47236655 |
| 2 | 0.63212056 | 0.10448711 | 0.36787944 |
| 2.5 | 0.71349520 | 0.08137464 | 0.28650480 |
| 3 | 0.77686984 | 0.06337464 | 0.22313016 |
| 3.5 | 0.82622606 | 0.04935622 | 0.17377394 |
| 4 | 0.86466472 | 0.03843866 | 0.13533528 |
| 4.5 | 0.89460078 | 0.02993606 | 0.10539922 |
| 5 | 0.91791500 | 0.02331423 | 0.08208500 |
| 5.5 | 0.93607214 | 0.01815714 | 0.06392786 |
| 6 | 0.95021293 | 0.01414079 | . 04978707 |
| 6.5 | 0.96122579 | 0.01101286 | 0.03877421 |
| 7 | 0.96980262 | 0.00857682 | . 0.03019738 |
| 7.5 | 0.97648225 | 0.00667964 | 0.02351775 |
| 8 | 0.98168436 | 0.00520211 | 0.01831564 |
| 8.5 | 0.98573577 | 0.00405140 | 0.01426423 |
| 9 | 0.98889100 | 0.00315524 | 0.01110900 |
| 9.5 | 0.99134830 | 0.00245730 | 0.00865170 |
| 10 | . 993262 | . | 0.00673795 |

## Poisson Cumulative Distribution Function, expected value 1.6

|  | $\mathrm{X} \leq$ | $\mathrm{P}\{\mathrm{X}>\mathrm{x}\}$ |
| :---: | :---: | :---: |
| 0 | 0.20189652 | 0.79810348 |
| 1 | 0.52493095 | 0.47506905 |
| 2 | 0.78335849 | 0.21664151 |
| 3 | 0.92118651 | 0.07881349 |
| 4 | 0.97631772 | 0.02368228 |
| 5 | 0.99395971 | 0.00604029 |
| 6 | 0.99866424 | 0.00133576 |
| 7 | 0.99973956 | 0.00026044 |
| 8 | 0.99995462 | 0.00004538 |
| 9 | 0.99999286 | 0.00000714 |

## Multiple Choice:

_c_ 12. In simulating the arrival process in (16) \& (17) above, an inter-arrival time T can be randomly generated by obtaining a uniformly-generated random variable X and computing
a. $T=-\frac{\ln (1-X)}{4}$
d. $\mathrm{T}=-\frac{\ln \mathrm{X}}{4}$
b. $T=1-e^{-4 X}$
e. $T=e^{-4 X}$
c. Both (a) \& (d) are correct
f. Both (b) \& (e) are correct
_a_ 13. The CDF of the distribution in (12) above, i.e., the inter-arrival times, is $F(t)=$
a. $1-\mathrm{e}^{-4 \mathrm{X}}$
b. $4 \mathrm{e}^{-4 \mathrm{X}}$
c. $1-4 \mathrm{e}^{-4 \mathrm{X}}$
d. $4 \mathrm{e}^{-4 \mathrm{X}}$
e. $e^{-4 X}$
f. None of the above

## 

The time between arrivals of cars are measured for 3 hours. It is expected that these observations have an exponential distribution with mean of 4 minutes (although the actual average value of the observations was 3.68 minutes). We wish to decide whether the discrepancy between the assumed arrival rate (one every 4 minutes) and the observed arrival rate (one every 3.68 minutes) is so large as to disqualify our assumption. The number of observations $\mathrm{O}_{\mathrm{i}}$ falling within each of several intervals is shown in the table below. We wish to test the "goodness of fit" of the exponential distribution with mean 4 minutes, and have prepared the table below:

| i | interval | $\mathrm{O}_{\mathrm{i}}$ | $\mathrm{p}_{\mathrm{i}}$ | $\mathrm{E}_{\mathrm{i}}$ | $\frac{\left(\mathrm{O}_{\mathrm{i}}-\mathrm{E}_{\mathrm{i}}\right)^{2}}{\mathrm{E}_{\mathrm{i}}}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | $[0,1]$ | 12 | 0.221199 | 11.06 | 0.0798984 |
| 2 | $[1,2]$ | 11 | 0.17227 | 8.61351 | 0.661212 |
| 3 | $[2,3]$ | 6 | 0.134164 | 6.70821 | 0.0747674 |
| 4 | $[3,5]$ | 6 | 0.185862 | 9.29309 | 1.16693 |
| 5 | $[5,9]$ | 10 | 0.181106 | 9.05528 | 0.098561 |
| 6 | $[9,+\infty]$ | 5 | 0.105399 | 5.26996 | 0.0138291 |

Notes: (i) the total number of observations was not determined in advance, but happens to be 50 .
(ii) the sum of the last column is $\mathrm{D}=2.0952$. A portion of a table of the chi-square distribution is given below:

| deg.of | Chi-square Dist'n $\mathrm{P}\left\{\mathrm{D} \geq \chi^{2}\right\}$ |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | ---: | ---: |
| freedom | $99 \%$ | $95 \%$ | $90 \%$ | $10 \%$ | $5 \%$ | $1 \%$ |
| 2 | 0.0201 | 0.103 | 0.211 | 4.605 | 5.991 | 11.210 |
| 3 | 0.115 | 0.352 | 0.584 | 6.251 | 7.815 | 13.277 |
| 4 | 0.297 | 0.711 | 1.064 | 7.779 | 9.488 | 15.086 |
| 5 | 0.554 | 1.145 | 1.610 | 9.236 | 11.070 | 16.812 |
| 6 | 0.872 | 1.635 | 2.204 | 10.645 | 12.592 |  |


| 7 | 1.239 | 2.167 | 2.833 | 12.017 | 14.067 | 18.475 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Note: The \# degrees of freedom is equal to 6 , the number of cells. The total \# of observations was not predetermined, nor was the parameter $\lambda$ estimated from the data.

Indicate whether true or false, using " + " for true, " $\mathbf{o "}$ for false.

| $\pm$ | 1. The CDF of the inter-arrival time distribution is $\mathrm{F}(\mathrm{t})=\mathrm{P}\{\mathrm{T} \leq \mathrm{t}\}$ |
| :---: | :---: |
| - | 2. The parameter $\lambda$ of the exponential distribution was assumed to be 4 minutes. |
| -- $\underline{O}_{-}$ | 3. If T actually does have an exponential distribution with mean 4 minutes, then (based upon the table above) the probability that D exceeds 2.0952 is less than $10 \%$. |
| $\pm$ | Note: $\mathrm{P}\{\mathrm{D} \geq 10.645\}=10 \%$, and $\mathrm{P}\{\mathrm{D} \geq 2.0952\}$ is larger than $10 \%$ (nearly $90 \%$, according to the table). <br> 4. The quantity $\sum_{i=1}^{6} \frac{\left(\mathrm{O}_{\mathrm{i}}-\mathrm{E}_{\mathrm{i}}\right)^{2}}{\mathrm{E}_{\mathrm{i}}}$ is assumed to have a "chi-square" distribution. |
| $\pm$ | 5. The smaller the value of D , the better the fit for the distribution being tested. |
| $\pm$ | 6. The quantity $\mathrm{E}_{i}$ is the expected number of observations in interval \#i, if the assumption is true. |
| $\bigcirc$ | 7. The probability $p_{i}$ that a car arrives in interval \#4, i.e., $[3,4]$, is $F(3)-F(4)$, where $F(t)$ is the CDF of the interarrival times. |
| $\pm$ | 8. If the gender of the car's driver is recorded also, with $X_{n}=1$ if the driver of car \#n is female ( 0 otherwise), then the sequence $\left\{\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}, \mathrm{X}_{4}, \ldots\right\}$ forms a Bernouilli process. |
| $\pm$ | 9. If the assumption above (that the times between arrivals have exponential distribution) is correct, the arrivals of the cars forms a Poisson process. |
| $\pm$ | 10. The number of "degrees of freedom" of the chi-square distribution for this test will be 6 , the number of cells in the histogram. |
| - ${ }_{-}$ | 11. Based upon these observations, the exponential distribution with mean 4 minutes should be rejected as a model for the inter-arrival times of the vehicles. |
| o | 12. The chi-square distribution for this goodness-of-fit test will have 4 degrees of freedom. |
| -- $\underline{O}_{-}$ | 13. The number of observations $\mathrm{O}_{\mathrm{i}}$ in interval $\# \mathrm{i}$ is a random variable with approximately binomial distribution with $n=4$ and probability of "success" $p=\mathrm{p}_{\mathrm{i}}$. |
| - ${ }_{-}$ | 14. The quantity $\mathrm{E}_{\mathrm{i}}$ is a random variable with approximately a Poisson distribution. |
| O | 15. The quantity D is assumed to have approximately a Normal distribution. |

## 

Suppose that 500 light bulbs are tested by simultaneously lighting them and recording the number of failures every 100 hours. The test is interrupted at the end of 1000 hours, when 291 bulbs have failed. As in your homework assignment, a Weibull probability model is then "fit" to the data.

For each statement, indicate " + " for true, " 0 " for false:
_ $\pm \quad$ 1. The quantity $R_{t}$ is the fraction of the 500 bulbs which are surviving at time $t$.
_ $\quad$ 2. The Weibull distribution is usually appropriate for the minimum of a large number of nonnegative random variables.
_o_ 3. If the failure rate is known to be decreasing, it may be more appropriate to use the Gumbel distribution than the Weibull distribution.
_o_ 4. We assume that the number of survivors at time $t, \mathrm{~N}_{\mathrm{S}}(\mathrm{t})$, has a Weibull distribution. Note: the time of failure of a bulb is being assumed to have the Weibull distribution.
${ }_{-} \quad$ 5. The Weibull CDF, i.e., $\mathrm{F}(\mathrm{t})$, gives, for each bulb, the probability that at time $t$ it has already failed.
_o_ 6. The method used to estimate the Weibull parameters u \& k requires that you compute the mean and standard deviation of the 291 bulbs which have failed.
7. The Minitab program fits a line which minimizes the maximum error.
8. Regression analysis (as performed by Minitab, for example) can be used to fit a function of the form $\mathrm{Y}=$ $\mathrm{ab}^{\mathrm{X}}$.
9. The sum of the CDF (cumulative distribution function) $\mathrm{F}(\mathrm{t})$ and the Reliability function $\mathrm{R}(\mathrm{t})$ is always equal to 1 for every probability distribution.


Note: Probability that both B's fail is $0.40 \times 0.40=0.16$, so that the subsystem has $84 \%$ reliability. The probability that both component $A$ and the $B$ subsystem survive is $0.60 \times 0.84=50.4 \%$.
_d_ 22. If component $A$ is $70 \%$ reliable and $B$ is $60 \%$ reliable, the reliability of the system below is (choose nearest value):

a. $\leq 10 \%$
b. $20 \%$
c. $30 \%$
d. $40 \%$
e. $50 \%$
f. $60 \%$
g. $70 \%$
h. $80 \%$
i. $90 \%$

Note: the probability that both A and B survive is $0.70 \times 0.60=42 \%$
23. If $F(t)$ is the CDF of the lifetime of each of 10 devices in a system (and $f(t)$ the density function), then the CDF of time of the final unit to fail is
a. $[\mathrm{F}(\mathrm{t})]^{10}$
b. $[1-\mathrm{F}(\mathrm{t})]^{10}$
c. $[f(t)]^{10}$
d. $[1-\mathrm{f}(\mathrm{t})]^{10}$
e. None of the above

Note: Let $\mathrm{T}_{\mathrm{i}}=$ failure time of device \#i, with $\operatorname{CDFF}(\mathrm{t})=\mathrm{P}\left\{\mathrm{T}_{\mathrm{i}} \leq \mathrm{t}\right\}$. Then probability that all 10 units have failed is therefore $\mathrm{P}\left\{\left[\max \mathrm{T}_{\mathrm{i}}\right] \leq \mathrm{t}\right\} \quad \mathrm{P}\left\{\mathrm{T}_{1} \leq \mathrm{t} \& \mathrm{~T}_{2} \leq \mathrm{t} \& \ldots \mathrm{~T}_{10} \leq \mathrm{t}\right\}=\mathrm{P}\left\{\mathrm{T}_{1} \leq \mathrm{t}\right\} \times \mathrm{P}\left\{\mathrm{T}_{2} \leq \mathrm{t}\right\} \times \ldots \times \mathrm{P}\left\{\mathrm{T}_{10} \leq \mathrm{t}\right\}=$ $[\mathrm{F}(\mathrm{t})]^{10}$
24. Suppose that the time between arriving cars has exponential distribution, with average of 15 seconds, and a pedestrian requires 30 seconds between cars in order to cross the highway. Then the probability that the pedestrian is still waiting after 5 cars have arrived is
a. $2 \mathrm{e}^{-2(5)}$
b. $\left(\mathrm{e}^{-2}\right)^{5}$
c. $1-\mathrm{e}^{-2(5)}$
d. $\left(1-\mathrm{e}^{-2}\right)^{5}$
e. None of the above

Note: Let $\mathrm{T}_{\mathrm{i}}=$ time between arrivals of car \# $\mathrm{i}-1$ and \#i have exponential distribution with rate $\lambda=$ $4 /$ minute. This random variable has $\operatorname{CDF} F(t)=1-\mathrm{e}^{-\lambda t}$. Then the pedestrian is still waiting after five cars have arrived if $\mathrm{T}_{1} \leq 0.5 \& \mathrm{~T}_{2} \leq 0.5 \& \ldots \mathrm{~T}_{5} \leq 0.5$ which has probability $\mathrm{P}\left\{\mathrm{T}_{1} \leq 0.5 \& \mathrm{~T}_{2} \leq 0.5 \& \ldots\right.$ $\left.\mathrm{T}_{5} \leq 0.5\right\}=\mathrm{P}\left\{\mathrm{T}_{1} \leq 0.5\right\} \times \mathrm{P}\left\{\mathrm{T}_{2} \leq 0.5\right\} \times \ldots \times \mathrm{P}\left\{\mathrm{T}_{5} \leq 0.5\right\}=\mathrm{F}(0.5)^{5}$ where $\mathrm{F}(0.5)=1-\mathrm{e}^{-4(0.5)}$

